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Abstract

We model the bankruptcy problem as a cooperative game played by
a continuum of claimants and allow the claimants to split their claims
or merge them with others’ claims. Our approach (in line with parti-
tion function form games) differs from the standard one (à la O’Neill,
1982) used in modeling cooperative claim (or bankruptcy) games in
that the stand-alone value of a coalition depends on the partition in
our model. We show, under mild assumptions, that the rewards must
be proportional in the core of our game. Our result complements ax-
iomatic results in the literature on the immunity of the proportional
rule to manipulation via merging and splitting. Moreover, it can be
considered as a policy-ineffectiveness result for bankruptcy problems.
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1 Introduction

The bankruptcy problem, introduced formally by O’Neill (1982), describes
a situation in which there is a perfectly divisible estate to be allocated to a
finite number of agents, whose claims over the estate add up to an amount
larger than the estate. Many real life problems (e.g., distributing a will to in-
heritants, liquidating the assets of a bankrupt company, rationing problems,
taxation, and cost sharing) can be studied using bankruptcy models. There
is a vast literature analyzing this problem with an axiomatic approach, char-
acterizing allocation rules with normatively desirable properties (see Moulin,
2002; Thomson, 2003 for comprehensive reviews).

The cooperative game theoretical approach has been proven to be another
fruitful approach to study bankruptcy problems. Under this approach, the
bankruptcy problem is transformed into a transferable utility game (or a
coalitional bargaining game); and cooperative solution concepts such as core,
kernel, nucleolus etc are studied.1

In the current paper, we follow the cooperative game theoretical approach.
In particular, we define a natural claim game among a continuum of claimants
and study the properties of the core of this game. In our claim game, given
the allocation rule to be used in resolving the bankruptcy problem, claimants
are allowed to split their (exogenously given) claims or merge their claims
with others’, before submitting them. Agents make these decisions simulta-
neously. The resulting claims are then submitted to the authority who will
apply a bankruptcy (or reward) rule to distribute the estate on the basis of
these claims. In defining the game, we are inspired by the presence of merg-
ing/splitting behavior in some real life bankruptcy problems (e.g., spouses
can act like a single claimant or the partners of a single firm can present
themselves as different claimants (see de Frutos, 1999)) and the incentives
some bankruptcy rules give to claimants (e.g., the constrained equal awards
rule encourages splitting whereas the constrained equal losses rule encourages
merging).

We consider reward functions that satisfy two very basic properties:
budget-balancedness, stipulating that the resource is completely distributed
and anonymity, stipulating that the identity of the claimants does not matter
but only the size of their claims. Both of these assumptions on the reward

1For the cooperative game theoretical approach to claims problems, the reader is re-
ferred to Aumann and Maschler (1985), Young (1985), Curiel, Maschler, and Tijs (1987),
and Dagan and Volij (1993) among others.
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function are primitive. In fact, the former is almost always embedded in
the definition of a bankruptcy rule and the latter assumption is a standard
fairness assumption used in the literature.2 Our main result is that the re-
wards are always proportional in the core of our game. We should emphasize
that our result only concerns the behavior of reward functions in the core.
Outside the core a great deal of freedom can be attained.

The game we analyze is essential and primitive. A legal system must
have a clear and understandable method for determining how rewards will
be determined if the case goes to court. Once the bankruptcy is officially filed
and the reward rule is in place, it is natural to consider how agents react to
this environment, i.e., how the court rule influences pre-court negotiations
where agents may trade claims. We analyze these negotiations as a coalitional
game.

Our analysis differs from standard cooperative games used to model
bankruptcy problems in that the reward rule in our model is exogenously
given. As we mentioned above, it can be interpreted as determined a-priori
by the court. This implies that the stand-alone value of a coalition is not well
defined, which is in contrast to the standard approach à la O’Neill (1982).
No matter which coalition forms (naturally, except the grand coalition), its
reward may depend on which other coalitions are formed. Most other anal-
yses of bankruptcy with a cooperative game begins by characterizing the
stand-alone value of a coalition, which is rule-independent and from that
they derive the core or another solution concept. This literature is primarily
interested in the relationship between various reward rules and solution con-
cepts (e.g., Aumann and Maschler, 1985; Curiel et al., 1987; Serrano, 1995;
Benôıt, 1997 among others).

Our main result is related to some other results on the proportional rule
in the axiomatic literature. One of these studies is Chambers and Thomson
(2002). These authors show in a continuum of agents setup that the propor-
tional rule is the only rule that satisfies equal treatment of equal groups. We
do not assume this property in our model. Nevertheless, it holds in the core
of our game. Moreover, Chambers and Thomson (2002) provide an axiomatic
result, whereas ours comes from the analysis of a cooperative game. Finally,
proportionality is a core-property in our model, whereas it is universally char-

2We should note that the sequential priority rules that are widely used in many coun-
tries in case of corporate bankruptcy violate this property. Anonymity is still satisfied
within each priority class though.
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acterized in Chambers and Thomson (2002). Several other papers (O’Neill,
1982; Moulin, 1987; Chun, 1988; de Frutos, 1999; Ching and Kakkar, 2001;
Ju, 2003; Ju, Miyagawa, and Sakai, 2007) show, in different contexts, that
the proportional rule can be characterized with (i) no advantageous merging
and no advantageous splitting (or equivalently, it is the only rule that cannot
be manipulated via merging or splitting of claims), (ii) no-arbitrage condi-
tion, or (iii) no advantageous reallocation.3 Our result differs from the ones
in these studies since there can be many rules that behave proportionally in
the core but almost arbitrarily elsewhere and core can be non-empty even
under reward rules that do not satisfy no-arbitrage type conditions.

Finally, we believe that our main result has an important implication:
the support for proportionality is stronger than what the literature on
bankruptcy problems indicates.4 The reason is that almost all studies in
the literature focused on particular rules; but our main result shows that
even if a rule other than the proportional rule is used, the equilibrium alloca-
tion can still be proportional. Hence, from another perspective our result can
be interpreted as a policy-ineffectiveness result: a policymaker who wants to
implement an allocation other than the proportional one may get nothing but
proportionality since agents adjust their behavior according to the policy.

2 The Model

We have an uncountable, compact set of agents, denoted by N ⊆ R, which is
equipped with the Euclidean metric. Let B be the σ−algebra generated by
Borel measurable subsets of N . We use C to denote the (Borel) measure of
claims with associated density denoted by c. There is a minimal size that a
claim can be submitted in, κ (e.g., one cent or one stock) and all claims are
multiples of this amount. Thus, for χi ∈ N\ {0}, c (i) = χiκ > 0 is the claim
of i ∈ N . We assume that C is non-atomic and we normalize C (N) = 1.
A coalition denoted by Sk is a measureble subset of N . A partition S is a
set of disjoint coalitions (S1, S2, ..., SK) such that their union is N . Let C(S)

3More recently, Ju (2013) offers a full characterization of non-manipulable rules in
allocation problems over networks, where exogenously given network stucture contrains
the set of feasible coalitions.

4Reader is refered to Chun (1988), Bergantiños and Sanchez (2002), Chun and Thomson
(2005), Ju, Miyagawa, and Sakai (2007), and Karagözoğlu (2014) among others for studies
providing support for proportionality in bankruptcy problems
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denote the vector of claims so that Ck ≡ C (Sk) and C (S) ≡ [C (Sk)]Sk∈S.
The resource available for distribution is E, where κ ≤ E ≤ 1 − κ. Since
E will be fixed in our analysis, we suppress it in our notation. E will be
distributed according to a reward function, R. Formally, R : S → R∞
with the restriction that R (S) ∈ R|C(S)|, where S denotes the space of all
possible partitions and |C (S)| is the cardinality of the claims vector. Hence,
R (Sk|S) ≡ Rk(S) stands for the reward of (potentially a subset of) agents
in Sk given partition S. Let v (i, S) be the reward of agent i from R(S).
As in almost all models of bankruptcy, we assume (for R) that rewards are
bounded below by zero and above by claims. In addition to these, we impose
the following two restrictions.

Definition 1 R (·|·) is budget balanced if
´
i∈S v(i, S)dµ = E.

Assumption 1 R(S) is budget balanced.

Definition 2 R (·|·) is anonymous if for every S ∈ S and every Si ∈ S and

every perturbation Π of identifiers, R (Sk|S) = R
(
SΠ(k)|S̃

)
where S̃ is the

perturbed partition.

Assumption 2 R(S) is anonymous.

The first one is an implication of efficiency.5 The second one is a primitive
fairness axiom, which is satisfied by almost all well-known bankruptcy rules
except the sequential priority rules.6

In our game, any claimant can decide to split his claim into multiple
smaller claims (down to a minimal size of κ) or merge his claim with others’
claims and submit them as one larger claim.7 This creates a transferable

5We do not label the property as efficiency since this term has welfare connotations.
We think it is more appropriate to perceive it as a simple accounting property here.

6As mentioned in the introduction, Chambers and Thomson (2002) characterizes the
proportional rule with equal treatment of equal groups in a continuum of agents setup.
It is worthwhile saying here that anonymity and equal treatment of equal groups are
logically not related. Furthermore, in our model reward assignments within coalitions
are determined in the core whereas in their model reward functions also deal with within
coalition reward assignments.

7Suppose that some claimants merged their claims and submitted the sum as one large
claim, then the reward function, R, will assign a reward to this single, large coalition.
Obviously, this reward later needs to be distributed among the members of the coalition.
It is worthwhile saying here that we do not impose any division rule for the intra-coalition
division problem. Nevertheless, we show in Remark 2 that the intra-coalitional division is
also proportional for any coalition in the core.
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utility (TU) game (N,R), where R is the reward (or characteristic) function
for this game. Our model is similar to partition function form games, where
coalitional rewards depend on the partition structure.8 We follow Aumann
(1964) in that we require a coalition of agents to be a subset of σ-algebra Sk ⊆
B. Finally, we work with positive measure (non-null) coalitions throughout
the paper.

The following lemma shows that the average reward (later utilized in the
proof of our main result) is well-defined.

Lemma 1 If the reward rule is anonymous then, for all Sk ∈ S, R(Ck|S)
Ck

is
bounded.

Proof. We prove this result in two steps: for Sk closed and Sk not closed.
First assume that Sk is closed in S. Notice that it is bounded since it is a
subset of a compact space. Then,

R (Ck|S)

Ck
=

´
i∈Sk

v (i, S)

Ck
≤

maxi∈Sk

v(i,S)
c(i)

´
i∈Sk

c (i)

Ck
= max

i∈Sk

v (i, S)

c (i)

Now, assume that Sk is not closed in S; and let S ′ be the partition
where S ′k = S̄k and it is otherwise unchanged. Since C is non-atomic,
C (Sk) = C (S ′k) follows. By anonymity, R (Sk|S) = R (S ′k|S ′). Thus
R(Sk|S)
Ck

=
R(S′

k|S
′)

Ck
≤ maxi∈Sk

v(i,S′)
c(i)
≤ 1.

In the definition of core in a TU-game, a partition S (and the corre-
sponding allocation) is blocked by a non-null coalition if there exists X ⊆ B
such that R (X|S ′) >

´
i∈X v(i, S) where S ′ is the resulting partition after

deviations. A coalition is non-null if C (·) > 0.9 Note that, by assumption,
S ′ is feasible (i.e.,

´
i∈N v (i, S ′) dµ ≤ E). If S is not blocked by any feasible

coalition, then we say it belongs to core.

8Partition function form games are introduced by Thrall and Lucas (1963). For more
recent research on the topic, see Funaki and Yamato (1999), Koczy (2007), Grabisch
(2010), Grabisch and Funaki (2012), Bloch and van den Nouweland (2014).

9We assume that if some agents leave a coalition, the other members of the coalition
still stay together. This notion is known as δ−stability in the literature (see d’Aspremont
et al. 1983; Chander and Tulkens, 1997; Chander 2007). An alternative assumption is
γ − stability of Hart and Kurz (1983) where all members of the coalition will break up to
singletons if and when some agents leave a coalition. In this paper, we take the behaviour of
the non-deviating agents exogoenous. The non-cooperative coalition formation literature
presents some attempts for endogenizing it. Reader is referred to the extensive survey of
Ray and Vohra (2015) for such studies.
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3 Rewards in the core

Lemma 2 clarifies the importance of the average reward of an agent in a
coalition, in claim games with continuum of agents investigated here.

Lemma 2 For every α ∈ (0, 1] and Ŝk ⊆ Sk such that C
(
Ŝk

)
= αC (Sk)

10

R (Sk|S)

Ck
≥ min

Ŝk⊆Sk

ˆ
i∈Ŝk

v (i, S)

αCk
dµ.

Proof. If α = 1, the statement holds by definition. Assume that α < 1
and let Ŝk be any subset that attains the minimum. Note that by the defi-
nition of Ŝk, for all S ′k ⊆ Sk (disjoint from Ŝk) such that C (S ′k) = βC (Sk)

and β < α,
´
i∈Ŝk

v(i,S)
αCk

dµ ≤
´
i∈S′

k

v(i,S)
βCk

dµ. Thus, let {βj}Jj=1 be such that

for all j, βj < α and ΣJ
j=1βj = 1 − α. Now, suppose αR (Sk|S) <

minŜk⊆Sk

´
i∈Ŝk

v (i, S) dµ. Replacing v (i, S) with its lower bound, we have´
i∈Sk

v (i, S) dµ > αR (Sk|S) + (1− α)R (Sk|S) = R (Sk|S), a contradiction.

Note that Ŝk ⊆ Sk in this lemma is the cheapest group to get to agree
to block the current partition. Thus, a goal within a coalition should be
to maximize the reward of this group. Across coalitions this would imply
maximizing the average reward; and those with the highest would be in the
best position to block current coalitions.

The result in the following lemma is superseded by our main proposi-
tion. It is related to the property known as regressivity in the literature
on bankruptcy problems. Regressivity stipulates that if Ck ≥ Cl, then Sk
should receive proportionally at most as much as Sl does. Here, we find this
property to be a mere by-product of strategic repositioning.

Lemma 3 If S is in the core and Ck ≥ Cl > 0, then R(Sk|S)
Ck

≤ R(Sl|S)
Cl

.

Proof. Suppose by contradiction that there exists Sl and Sk such that
Ck ≥ Cl > 0 but R(Sk|S)

Ck
> R(Sl|S)

Cl
in the core.

Now, we show that there exists a blocking coalition. To do that, cre-

ate a new partition denoted by S ′ by choosing an Ŝk ⊆ Sk and C
(
Ŝk

)
+

10The existence of such sets is guaranteed by Lyapunov Theorem (see Aliprantis and
Border, 2006 for further details).
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C
(
Sk \ Ŝk

)
= C (Sk). Notice that this implies there exists β ∈ (0, 1] such

that βC (Sk) = C
(
Ŝk

)
and (1− β)C (Sk) = C (Sl) = C

(
Sk \ Ŝk

)
. Then,

have the agents in Ŝk propose to unite with the agents in Sl and offer them
R (Sl|S) + ε. This can be done in a way that everyone in Sl strictly prefers
this change for some ε > 0.

Furthermore, C (Sk|S) = C
(
Ŝk ∪ Sl|S

)
. Now, what is left for agents

in Ŝk is R (Sk|S) − R (Sl|S) − ε. Hence, we need to show that R (Sk|S) −
R (Sl|S)− ε >

´
i∈Ŝk

v (i, S) dµ. From Lemma 2, this reduces to showing that

R (Sk|S)−R (Sl|S)−ε > βR (Sk|S) holds. Since R (Sl|S) < (1− β)R (Sk|S),
this inequality is satisfied for some ε > 0.

Remark 1 The result in Lemma 3 rules out, for example, the constrained
equal losses rule:11 under the constrained equal losses rule, the game will
have an empty core. To see this, recognize that there is always a C < 1 such
that for all S, R (C|S) = E. But who should be in this coalition? There will
be never-ending negotiations to be in this coalition implying that everyone
will compromise more and more in order not to get zero. This implies that
each member of this coalition must be getting zero : a contradiction. More
generally , the game will have an empty core under any strictly progressive
reward rule.

Next, we show that the rewards are proportional in the core. We are
concerned with the cases where core is non-empty.

Proposition 1 Under Assumption 1 and 2, if S is in the core, then for all
Sk ∈ S, we have R (Sk|S) = CkE.

Proof. Consider creating an S ′ by splitting Sk into two coalitions Ŝk and

Sk\Ŝk such that C
(
Ŝk

)
= αCk for 0 < α < 1 and C

(
Sk\Ŝk

)
= (1− α)Ck.

Now if R (αCk|S ′) > αR (Ck|S) ≥ minŜk⊂Sk
φ
(
Ŝk|S

)
(where φ (·, ·) is

the amount the subcoalition Ŝk receives from R (Ck|S)) then Ŝk gains from
blocking. Likewise if R ((1− α)Ck|S ′) > (1− α)R (Ck|S). This implies that

max

(
R (αCk|S ′)

αCk
,
R ((1− α)Ck|S ′)

(1− α)Ck

)
≤ R (Ck|S)

Ck

11In our continuum of agents setup, the constrained equal losses rule can be defined as
follows: R(Sk|S) = max {C(Sk)− λ, 0} , where λ is chosen to satisy efficiency.
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or the average payoff of one of the groups is strictly larger; and this would
imply that they could profitably split.

Now, by budget balancedness, the other coalitions have in total E −
R (Ck|S) in S, whereas they have in total E−R (αCk|S ′)−R ((1− α)Ck|S ′)
in S ′.

If E−R (Ck|S) < E−R (αCk|S ′)−R ((1− α)Ck|S ′), then other coalitions
can afford to pay for the split.12 Thus, we must have R (Ck|S) = R (αCk|S ′)+
R ((1− α)Ck|S ′) or R(Ck|S)

Ck
= αR(αCk|S′)

αCk
+ (1− α) R((1−α)Ck|S′)

(1−α)Ck
. Combining

this with the weak inequality above, we have R(αCk|S′)
αCk

= R(Ck|S)
Ck

.

Finally, choose Sj so that Sj ∈ arg maxSi∈S C (Si). Then, there exists an
αk ≤ 1 such that Cj = αkCk for all k. Therefore, R (αkCk|S ′) = R (Cj|S ′) =

R (Sj|S) or R (Sj|S) =
Cj

Ck
R (Ck|S) (by anonymity and the definition of core)

and
´
Sj∈S

Cj

Ck
R (Ck|S) ds = R(Ck|S)

Ck

´
Sj∈S Cjds = R(Ck|S)

Ck
= E (by budget bal-

ancedness). Thus, R (Ck|S) = CkE and the result follows.

Remark 2 Our result implies that for all Ŝk ⊆ Sk, if C
(
Ŝk

)
= αC (Sk)

then φ
(
Ŝk|S

)
= αCkE. This shows that the proportionality of rewards is

not only valid across coalitions in the core, but also valid within coalitions in
the core: a major strengthening of our main result.

Remark 3 What would happen under the constrained equal awards rule,
which gives every (positive measure) coalition an incentive to split?13 As-
suming that a minimum size bound (similar to κ) also for coalitions, we can
see that any positive-measure claimant with a claim larger than the mini-
mum claim-size will have an incentive to split his claim into multiple, smaller
claims. This will lead all claimants to split their claims to the smallest claim
possible and submit these smaller claims. This suggests that in the core,
agents’ total rewards will be proportional (to the total number of units of
shares they have).

Finally, Corollary 1 below shows that we can extend the result in Propo-
sition 1 in an interesting manner. In particular, we can say that the reward

12We implicitly assume that transfers are possible across coalitions. Reader is referred
to Gomes and Jehiel (2005), Ray (2007), and Ray and Vohra (2015) for studies using a
similar assumption).

13In our continuum of agents setup, the constrained equal awards rule can be defined
as follows: R(Sk|S) = min {C(Sk), λ} , where λ is chosen to satisy efficiency.
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rule must be downward proportional. Or equivalently, if S ′ is derived from S
by splitting coalitions in S up, then the rewards must still be proportional.

Corollary 1 If S is in the core and S ′ can be derived from S by finitely
many splits of coalitions in S, then S ′ must also be in the core.

Proof. The proof of Proposition 1 shows that any S ′ derived from S is
also locally proportional; and therefore in the core. Thus, by induction, the
statement follows.

4 Concluding Remarks

In this paper, we model a bankruptcy problem as a cooperative game with
continuum of agents. Under mild assumptions, we show that the rewards in
the core of the game are proportional, independent of the reward rule used.
Our game allows claimants to split their claims or merge them with other
claimants’ and submit it as a single claim. The way we model bankruptcy
problem is different than the standard approach (see O’Neill, 1982) in that
we consider circumstances where a reward rule is exogenously given by the
court (or the authority) and the value of a coalition depends on the partition.
We think that these are reasonable deviations from the standard model since
the rule to be used if the case goes to court is pre-determined in many real
life bankruptcy problems; and given this assumption the value of a coalition
will depend on other coalitions. The second deviation has already a long
history in coalitional games literature (e.g., partition function form games).

Our main result provides another possible explanation as to why pro-
portional allocation of resources in many real-life problems is a very pop-
ular practice. Our work can be interpreted as an attempt to investi-
gate bankruptcy problems where the final (submitted) claims are endoge-
nously/strategically determined. These problems are of great relevance since
merging/splitting is allowed in many real-life bankruptcy problems. Under
this interpretation, our main result implies that if there are large number
of claimants and merging/splitting is not explicitly prohibited, then for a
great variety of reward rules, agents adjust their claims to such extent that
the reward rule behaves proportionally in equilibrium. In other words, if we
predict that the core outcome will be observed in the real life, then a policy
that aims to implement an allocation other than the proportional one will
be ineffective. In the light of this, we argue that the practice of allocating a

10



resource proportionally would be observed even more frequently than the use
of the proportional rule in real-life claim problems. Hence, if one focuses on
allocation vectors rather than particular rules, the support for proportional-
ity is even stronger.14 One possible caveat for our results is that they would
not be valid in a model with finite number of claimants. Investigating the
limit properties (i.e., by replication or increasing the number of agents) in
such a model is left for future research.

Acknowledgments: Will be added later.
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