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Abstract

This paper shows that if interaction is not anonymous then costly
messages can establish a folk theorem in repeated matching games.
This result holds for all population sizes and a broad class of matching
rules—including many choice based rules. Cooperation is achieved
through a formalization of a “reference” strategy.

1 Introduction

Trade is a cooperative activity, but how can selfish traders maintain coopera-
tion? When economists address this question they usually assume exogenous
institutions such as courts. Does this means that without courts there can
be no trade? This paper shows that if people can send messages then there
can be trade without courts when interaction is repeated and not anonymous.

*The author would like to thank Eddie Dekel, Juuso Valimakki, Herve Moulin, and
Asher Wolinsky for their helpful comments and the Sloan Foundation for their generous
support. Of course any remaining errors are the responsibility of the author.



Trade takes place within a two player repeated matching game and peo-
ple communicate between periods by sending costly messages. The messages
used in this paper are modeled on signed letters and face to face communi-
cation.

These messages enable cooperation with very minimal restrictions on in-
teractions. Without exogenous institutions repeated interaction is needed
to overcome short run incentives. A repeated matching game weakens this
restriction to people only having to interact with someone. Furthermore,
unless people have no incentive to lie, messages used to achieve cooperation
can not be anonymous. In environments where these conditions are met I
show that society can organize itself and achieve cooperation.

An example of an interaction described by this model is the landlord /tenant
relationship. Let us assume each landlord has only one apartment to let, all
apartments are basically the same, and the tenants all move at the same time
of the year. The problem in this relationship is that while a landlord may re-
quire a deposit a tenant can cost more than this. On the tenant’s side there
is uncertainty about whether the landlord will keep up the maintenance and
repay the deposit. The incentive to cooperate in this situation is commonly
achieved by asking for references. Here an equilibrium is constructed where
everyone asks for references and no one cheats.

This paper builds on the work of Kandori [8] and Hasker [7]. These pa-
pers use exogenous information transmission, and the latter paper achieves a
folk theorem nearly as weak as in the standard repeated game. However the
authors always acknowledged that relying on exogenous information trans-
mission is a simplifying assumption. Kandori [8] wonders in his conclusion
if the same results could be achieved with endogenous information transmis-
sion. If not then what is the difference between the exogenous transmission
and a court? This paper shows that the results in Kandori [8] and Hasker [7]
do not depend on exogenous information transmission. They are a natural
outcome of a structural analysis of the interaction.

Two basic problems must be overcome to achieve cooperation based on
references.  First, why would anyone give a reference? A landlord will
probably never rent to the same tenant again, and thus has no personal
interest in giving a reference. On the other hand why would anyone check



a reference? In equilibrium all people will follow the rules, and thus the
landlord knows what the reference will be before asking. I address both
of these problems by requiring that not checking or not sending references
equivalent to deviating in the stage game. In a world where reputations are
made or ruined by a person’s word, a person’s word is as important as what
she does.

To allow this paper to focus on communication, I only show that players
can achieve cooperation in a symmetric prisoner’s dilemma game with the
option of not interacting. The matching rule is uniform, but I augment the
standard payoffs to mimic the incentives players have if the matching rule is
not uniform or even history dependent. The results can be shown to hold
more generally but this unnecessarily complicates the analysis. I will discuss
how to generalize the results in the final section, but until that time I will
focus on this simple game.

One important restriction is that the results do not depend on a player’s
being uninformed—a weakness of trigger strategies among others. While
messages are all we need the results wouldn’t be very compelling if we had to
rule out newspapers and other sources of information. These other sources
could result in some people having full information. Thus the equilibria found
here—which use a limited amount of information—should work even if some
people do have full information, this requirement is that equilibria are other
strarghtforward.

The two fundamental assumptions of our model are that interaction is
non-anonymous and players can send messages, related research indicates
these may be necessary to achieve cooperation. Kandori [8] and Ellison [6]
consider anonymous interaction. They show that if there is a dominant
strategy and a uniform matching rule then cooperation can be achieved for
small populations. Unfortunately their results fail as the population grows
larger and if there is any probability of people making errors then everyone
stops cooperating in finite time. Ahn and Suominen [2] consider what can be
done with non-anonymous interactions and limited messages. They extend a
variant of Kandori’s model (with one sided moral hazard) by allowing people
to send messages to their neighbors (“word of mouth”). They find that they
can extend Kandori’s results to large populations if the number of neighbors



is required to be large. The paper before you achieves much more general
results, here the population size does not affect analysis and the results can
be generalized to a large class of matching rules and stage games.

Matsushima [12] and Kandori and Matsushima [11] also use messages in
between the stage games in repeated game analysis. They use messages to
allow people to correlate behavior when what happened in the stage game
is not perfectly observable. Ben-Porath and Kahneman [4] also use this
technique when what someone did in the stage game is only observable by
some of the other players. However since both analyze repeated games the
incentive problem is simpler. In both of these situations the incentive prob-
lem is getting truthful revelation, in repeated matching games the additional
incentive problem of getting any revelation must also be solved.

In the next section of the paper the model and the stage game are pre-
sented. Following this I describe the strategy used to ensure cooperation.
The fourth section then proves the results, and the final section discusses
generalizations and possible paths for future research.

2 Model

Assume there is a finite population of players with an even number of mem-
bers, call this set P where # (P) > 4. These people will be matched in
pairs repeatedly, with their payoff from the repeated matching game being
the sum of their per-period payoffs geometrically discounted by § € (0,1).
For arbitrary player z call p (x) the person x is interacting with in period ¢,
for the rest of the paper p (i) = j. Then in period ¢ + 1 ¢ will be matched
uniformly with all players in P\ {i,j}. After players observe who they are
matched with each period they will play a communication game which will
be followed by a stage game.

In the communication game players will send personal and joint messages.
The model of a message is based upon two common methods of communi-
cation, letters and face to face communication. Both of these methods are
non-anonymous—it is not possible for the sender to lie about who she is (let-
ters must be signed)—and it is possible to send joint messages—if players
1 and j are interacting, then ¢ and j can send a message from them both



(both must agree to this action). The receiver will observe who sent him the
message and its contents—if it is a joint message then they will observe both
senders. In any message the first element will be the identity of the sender,
the second element will be the identity of the receiver, and the rest will be the
contents. These contents will be identities of individuals in the population or
one of five indicator functions, {d;;,d;+} € {0,1,2}, {d;s—1,d;+—1} € {0,1}
and 1(r; / j) € {0,1}. The indicator functions d, ; and d;, will keep track of
the number of deviations in the communication game. The indicator function
d; +—1 equals one if last period i or i’s last partner deviated, and 1 (r; /4 j) =1
if r; did not send a message to j. Given these functions the set of messages
is: M® = {P x PxP?x{0,1}° x {0,1,2}*} Ul, where if § is the message
then this means a message was not sent. Note ¢ can only send messages
where i is the first element, so M? = {i x P x P? x {0,1}® x {0,1,2}*}
UQ. The set of joint messages is the same as the set of messages except
that the first two elements must be the identities of the senders, or JM? =
{P?x P x P?x {0,1}* x {0,1,2}"} U and JM} = {{i, j} x P x P*x {0,1}* x {0,1,2}"}
U(. Players can send up to k > 4 messages simultaneously (joint or not), and
can send them in each of 5§ > 5 sub-periods before the stage game—indexed

t.1,t.2,t.3,...t.5. Thus i’s language is M; = <(MZO)%) , and {7,j}’s joint

language is JM;; = ((JM,%)]C> .

It will be indicated that a player x € P sends a message to y € P by
a directed arrow: = — y. For sets of players X,Y the notation X — Y
indicates that + - y forallz € X andy €Y. X S Y means X — Y and
Y — X. X /Y means that some player x € X did not send a message to
some y € Y, and X /Y means either X /~Y or Y /~X. If something
is done conditional on x — y then it is implicit x also must have made the
correct statement. If a pair of players send a joint message then this is
indicated by {z, 2z} 2 .

The costs of taking these actions will be dependent on the individual and
period, for all m; € M;, jm;; € M;; there will be a cost ¢;; (m;, jm;;). All that
will be common knowledge among all the players is that this cost function is
weakly positive, cardinally dependent, and has bounded incremental cost. A
cardinally dependent cost function depends only on the number of messages,



or for m;,m; € M;, jmijaj/;/nij € JMy; if # (jm;) + # (Jmi;) = # (M) +

# (ﬁ@”> then ¢ (my, jmij) = ca (mi, jAngU) A cost function has bounded
incremental cost if for any m? € M? if m; Um? € M; then
cij (ma, jmig) < e (my Umy, jmij) < ¢ (my, jmag) + €

(if m{ = 0 then c;; (my, jmy;) = ¢ (miUm?, jmy;)). If a message is a
joint message then the cost is incurred when both parties agree to send the
message.

After playing the communication game each player and his partner will
play a symmetric prisoner’s dilemma with the option of not interacting.
Their action set will be A = {0,1,2}. Let a;; be the action player i takes
in period t, then a; = {a;},.p is the vector of actions taken by the entire
population in period t. The payoffs in the stage game will then be:

J
0 1 2
0| 7+pu(a) | 0+py(a) |0
i1 8+p(a) |4+ py(a) |0
210 0 0

where p;, (a;) € {0,1} is independent of a;; and a;; and known only to player i.
These auxiliary payoffs—p;,, (a;)—ensures that the derived equilibrium will
work for much more general matching rules, these auxiliary payoffs would in
general be generated by the interaction between matching and actions. They
also are the incentive players have to deviate in the communication game.
Write 7 (a;, a;)+p;, (a¢) for player i’s total payoff when {a;, a;} are the actions
i and j takes and p;; (+) is as defined above, then player i’s per-period payoff
is wi (ar, my, jmig) = i (ar) + py (ar) — cir (Mg, jmag).

It will be shown that playing {0,0} can be an equilibrium path of this
repeated matching game. The equilibrium will be an endogenous social
norm, which has four elements, {Z,7,0,A}. Z = {0,1,2} is the set of
social statuses, and each player will have a z;; € Z. 7 is the transition rule
which is implicitly a function of what ¢ and j did last time and their social
status last time, but explicitly will be a function of {d;;,d;—1,d;js,d;+—1}.
The social standard of behavior is then a function from Z2? to A? and will



tell them what action to take today given their social status. A is the
communication protocol which will be detailed below, its primary purpose is
to transmit {d;+,d; +—1,d;+,d;+—1} correctly. Thus to dispense with the first
three elements,

Zit = 7-(di,hdi,tfladj,tadj,tfl) = max {di,t;dz’,tfladj,tadj,tfl}

Qg = Zig =20 (Zita th)

or {4, j} will share the worst future of the possibilities {d; ¢, d;+—1,d;+,dj—1}-

This equilibrium will be an other-straightforward sequential equilibrium.
An equilibrium is other-straightforward if some players having full informa-
tion does not change the vector of statuses. Full information is the history
of the entire game up to the current period—including who is matched to-
gether this period—and {c; (-), p (-)} for all i and t. Define Z* = {2y}, p
FI'" C P as the subset of players with full information in period ¢, and X|y
as the expectation of X given y.

Definition 1 An endogenous social norm is straightforward if for all FI* C
P ZYFI' = Z0.

Comparing this with straightforward (as used in Kandori [8] and Hasker
[7]) the only difference is that here some players might not send messages.
These messages must have no affect (since no one’s social status can be
changed) but the equilibrium will still ask for them to be sent.

3 The Communication Protocol

Repeated matching games are very common and have a common problem.
Two classic examples are employees with their employers and landlords with
their tenants. In both of these situations most problems happen right before
the relationship ends. At this point the intertemporal incentives are weakest
and people frequently either shirk at work or do not pay rent. What mitigates
these problems? The expectation that the employee’s next employer or
the tenant’s next landlord will ask for a reference. Here an equilibrium is
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constructed where the next employer always checks the reference and nobody
shirks.

The strategy has two basic phases. First everyone gets a reference in the
reference phase. This phase is what provides the intertemporal incentives
for people to behave cooperatively. If someone deviates in this phase this
information is shared with her current partner in the reporting phase. This
phase ensures that any deviation is common knowledge among all affected
parties before the stage game takes place.

The reference phase is a fairly straightforward strategy. To describe it
concisely, consider an arbitrary player . Think of this player as a tenant
who wants to rent an apartment from the landlord j = p(i). The new
landlord will require a reference, so first ¢ will send a letter to his last landlord
requesting one—call this player ;. r; will then send off a letter for 7, then ¢
and j will send messages to each other to make sure everyone did what they
were supposed to.

Now if r; deviates—for example by not sending a reference—he must
be punished but his partner (u(r;)) clearly won’t know this at this time.
Informing p (r;) will be done in the reporting phase, which will be structured
as a two stage declaration game. First ¢ and j will send a joint message
to both r; and p (r;) (likewise {r;, pu (r;)} will send joint messages to {i,j}).
Since all parties know that the their partner will be informed regardless of
their action they will cooperate during this phase. In the second stage ¢ and
j will exchange messages to make sure everything went fine.

This strategy is an equilibrium with a few restrictions on beliefs. Notice
that only limited restrictions are possible. Beliefs about what happened last
period must allow for the fact that some players can have full information.
Thus they can only be restricted to assuming that other players follow the
social norm unless they know that this didn’t happen. Beliefs during this
period can still be restricted, these beliefs must be consistent with:

Off Path Beliefs Off the equilibrium path, players’ beliefs must be consis-
tent with:

1. k + 1 deviations are infinitely less likely than k .



2. A deviation to cover up a previous deviation is infinitely more
likely than any other single deviation.

In the rest of this section I will give a precise description of the strategy,
the proof that it is an equilibrium will be in the following section.

3.1 The Reference phase.

First let me mention that any time that ¢ expects d;; = 2 or d;; = 2, 7 stops
sending all messages. The reference phase is a straightforward strategy,
formally first (in ¢.1) ¢ asks for a reference then in .2 i sends off a reference.
In ¢.3 ¢ reveals everything that happened to j, including enough information
for j to know what to do if there has been a deviation. To formalize this
strategy it is easiest to write it down in a table form. The subperiod in which
the message is sent will be written first, who is to send a message to whom is
written second, then the contents of the message, and finally what condition
must be met to send the message. Note that all actions are symmetric, for
example j — r; in ¢t.1 and ¢ — p (r;) in ¢.2.

Subperiod ‘ Action ‘ Contents ‘ Condition

t.1 =1 | ]

t.2 ri = J | dig—1 fisr,intl
t.3 i— g [ Ar,p(r)}dis—1, dje1, dig, djs

Now I will specify how d;; changes in these three periods. For clarity I will
write d;; (x, s) and d; ;1 (z, s) where this is the value of d;; (d;;—1) known by
individual = at the end of subperiod s, given this convention in sub-period
t.3 the variables d;; (7,2) and d;, (i,2) are equal to:

2 ifisrintd
dit (1,2) = 1 ifi p(r;)int.2
0 else
) 1 ifr; 71in t.2
dje (1,2) = { 0 elsef 7

and d;,_; is based on j’s reference. At the end of ¢.3:
diy (i,3) = 2 ifi A jint3
R max {d; (i,3),dis (J,3) , [diz—1(i,3) — dip—1(j,3)|} else
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and if d;; (¢,3) + d;; (4,3) = 1 then the players send messages in ¢.4 in the
reporting phase, if d;; (¢,3) + d;; (¢,3) = 0 they only have to send one more
message, in t.5.

Before continuing on to this phase, let me consider a natural question.
Why does i ask for a reference for herself instead of j7 For example a
landlord usually ask a tenant’s last landlord for a reference, here the tenant
does. There is a more complicated equilibrium where j asks for the reference.
In in that equilibrium you must overcome the problem of j just not asking
for the reference—which he knows the value of. Since r; only knows who ¢
is, he must first ask ¢ who j is and then report the deviation to j.

3.2 The Reporting phase.

At this point if d;; (4, 3) + d;, (¢,3) = 0 then players only exchange one more
message in ¢.5. If d;; (4,3) + d;, (i,3) = 1 then players send a joint message
to both r; and u (r;). Since these are joint messages if either does not send it
then both observe this, since both r; and p (r;) receive messages both knows
it is worthless to try to cover them up. Thus everyone does what they are
supposed to, and if there was a deviation in ¢.2 then this is verified. In table
form this strategy is:

] Subperiod ‘ Action ‘ Contents ‘ Condition
t.4 {i,5} 5 {rip(r)} | 1(ri £ 4) | dig1 (6) # dig1 (j)
t.5 1 —J digy djy
Int.5
( J
2 ifd;;(4,3) =land {3,5} & {ri,pu(r:i)}

orifd,;,; (i,3) = land

dis (1,4) = L(ri 75 ) +1(i /> p(ri)) > 1

( min{d,; (i,3) +d;; (4,3),2} else
dj.(j,4) can be found by symmetry. At the end of ¢.5

qa if i /> j in .5
di,t (7’7 5) — { max {di,t (7,7 4) s di,t (.]7 4)} else

10
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Note that the messages in t.5 are there because the absence of a message
will signal that something is wrong. Since people are supposed to reassure
each other that everything is fine, in £.5 the lack of a message is the signal
that d;; = 2. Another point is that messages will be sent in ¢.4 only if the
original deviation really was in ¢.2. If someone lied in ¢.3 then they will not

J
send the messages in t.4 since the liar knows {r;, u (r;)} /A {i,pu ()}

4 The Theorem.

The choice of the stage game makes the theorem straightforward.

Theorem 2 If § > % and ¢ < 1 then {0,0} is an other-straightforward
sequential equilibrium of the repeated matching game.

N

Before proving this result let me mention what could be done with corre-
lated actions. As in other folk theorems all that is really required about the
correlated payoff (call this 7 (a)) is that w (a) > 7 (1,1) and 7 (1,1) — 4¢ >
7m(2,2) = 0. Thus the folk theorem holds as long as 7 (a) — 4¢ > 0, where
zero is the minmax in the game. Notice that along the equilibrium path four
messages have to be sent every period, thus any payoff that is individually
rational given communication can be supported. To prove that {0,0} is an
equilibrium I will first prove that if players intend to be honest when sending
messages they will not deviate during the stage game. Then I will show that
given this result players can not manipulate their payoff by lying.

Lemma 3 As long as players intend to be honest, they will only send mes-
sages they are supposed to and not deviate during the stage game if 6 > %
and ¢ < 1.

Proof. player will not deviate during the stage game when her status is 0
if:
m (]—7 0) -7 (07 0) < o (7T (O, 0) + Pit+1 (at+1|ait = 0))
—0 (77 (1,1) + Pit+1 (apy1lay = 1))

7 (1,0) — 7 (0,0) 5

00 -FL+D) =

11



and this is true if 6 > 1. If she currently expects to receive 7 (1,1) or 7 (0, 0)
then she will gain nothing and the loss will be the same, thus she will follow
the strategy during the stage game.

If they do not send the message in ¢.1 then they will not have to send
four messages but they will receive 7 (2, 2) the worst possible future they can
face is to expect to receive 7 (1,1) currently, so they will not deviate if

m(1,1) —4¢ > 7 (2,2)

which is true as long as ¢ < 1. In all future sub-periods if they did not send
a message in t.1 then there is no benefit to sending any further messages
since their payoff will be 7 (2,2), thus they will never intend to send these
messages. The same result holds if they realize that they unintentionally
lied about who j was in ¢.1.

In ¢.2 first we will deal with the case where (due to a player having full
information) they realize that r; lied about y (r;). In this case regardless of
whether 7 sends a message or not ¢ will not receive a reference, and if ¢ sends
messages in t.4 she will not receive messages, thus regardless of what ¢ does
they will always receive 7 (2,2). This leaves only the case where everything
went fine in ¢.1. In this case if i does not send the message in .2 then 7 will
receive 7 (1,1) + p;; (a;) if ¢ follows the rest of the strategy, and the worst
i could expect to receive if she does send the message is 7 (1,1) + p;, (a;),
where a; is the same in both cases. However, if 7 does not send the message
she gains one message by doing this but will have to send two in ¢.4, thus
she will not do this. If she decides not to send any messages then she will
gain at most 3¢ by doing this, since this is less than she would have received
by following the same strategy in ¢.1 she will not do this.

In ¢.3 the possible states are either she deviated herself, she observed a
deviation by r;, both or neither. If neither then by not sending a message
she will receive 7 (2,2), and she will gain at most one message, thus since she
wanted to send messages in t.1 she wants to send in this case. If both then
either 7 will not send a message or in t.4 there will be two declarations that
someone deviated, thus in both cases she will receive 7 (2, 2) and she will not
send the message. If she observed only one deviation in ¢.2 the worst case is
when it was an apparent deviation by r;. In this case it could have been j
not sending a message, but it could also have been that r; just not sending
a message (or lying). Thus she will do it since %(ﬂ' (1,1) + py (ar) — ) +
i (2,2) > m(2,2).

In .4 if she is supposed to send messages and has not observed a deviation
then she will only bear the cost if j also sends the message, thus even if she
is unsure of whether it was j’s lie in t.3 or r;’s deviation that caused the
problem she will agree to send off the message. If she observed a deviation
then by sending off two messages she will achieve the payoff = (1,1) + p;; (a;)
if she does not then she will receive 7 (2,2) thus she will send the messages.
If she lied in .3 then even if she sends off messages she will not receive them,
thus she will not.

12



In ¢.5 if she is supposed to send a message the worst she can expect is
7 (1,1) + p;; (ay), thus she will do it. If she is not supposed to then the worst
case is when her partner claimed there was no deviation but she received
a message in t.4. In this case the two possible states are that her partner
deviated then lied to cover it up, or that r; lied in ¢.3 then sent off a message
in t.4 for no reason. Since it is infinitely more likely that someone lies to
cover up a deviation than any other deviation she will believe that j deviated
and then covered it up, and will not send a message. B

Now I will show that truth telling is always optimal, or that the commu-
nication protocol is status revealing.

Lemma 4 No player can manipulate the outcome by lying..

Proof. In t.1 if they lie then they will not receive a reference in ¢.3. If
1 doesn’t send a message in t.2 then covers up their original deviation in ¢.3
then 1(r; /~j) + 1(i fou(r;)) = 2 and 4’s status will be 2 regardless. If
1 does send a message in t.2 then in ¢t.3 j will not receive a reference and
{ri, p (r;)} will not send messages in t.4 thus ¢’s status will be two regardless.
Thus in every possible future ¢ can not lie to cover up her original deviation,
and she will be honest.

In ¢.2 they will be honest because if they lie then they will have to send
two more messages or get status two. Since it is not worth getting status
two at this point she will not lie.

In ¢.3 if she has detected no deviations she will not lie to make the situa-
tion worse. If she does lie then she will get status two, right now the worst
she can expect is status one. If she has detected a deviation in ¢.1 then since
the deviator will not send any messages if she lies to cover this up it will
still result in her getting status two. If she has detected one deviation in ¢.2
then if she covers it up it will either be known to her partner (her partner
not sending a message in ¢.1) or it will be reported in ¢.4 thus if she does not
declare the deviation then she will have status two, if she does she will have
status one and thus she will be honest. If she has detected two deviations
in ¢.2 either her partner will declare it (he, ¢, or r; deviated in ¢.1), or both
{rj,p(r;)} and {r;, p(r;)} will declare the deviation in ¢.4. In either case
she will get status two if she lies or not, thus she will be honest. In t.4
since all messages are joint messages lying in a message will be observed by
1’s partner and result in status two, thus she will not do it. If she is not
supposed to send messages then sending them will not change her status,
thus she will not do it. In ¢.5 if she lies in the message then she will get
status two, if she already expects this status no lie will change it so she will
be honest. If she expects status one then lying will just decrease her payoff
and she will not do it.

Thus in every sub-period she will be honest. W
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5 Discussion.

The results are easily generalized with multi-period two-tiered punishments.
The first punishment is for deviating in the stage game (or once in the commu-
nication protocol), the second punishment is for players who deviate multiple
times during the communication protocol. When you allow this change the
results extend to any two player stage game with a two dimensional pay-
off space. This requirement is met in any stage game that satisfies non-
equivalent utilities and pareto ranked payoffs. Non-equivalent utilities rules
out games of pure coordination (players’ payoffs are affinely equivalent). In
games of pure coordination punishing others is equivalent to being punished.
In a repeated matching game this removes a player’s incentive to cooperate
if she must punish in future periods. Pareto ranked payoffs rules out gener-
alized zero sum games. In zero sum games one person’s gain is the other’s
loss—thus players will always lie about the past. To support every individu-
ally rational payoff the cost of messages must go to zero, but as was already
pointed out any individual rational payoff given the costs of communication
can always be supported.

The result also holds for a large range of matching rules. Choice base
matching can be allowed as long as the matching is only affected by actions
taken in the stage game. Messages can affect the matching by affecting
social status, but messages that have no direct effect on status must be ig-
nored. Most other maintained assumptions can be weakened.. For example
if the complexity of the strategy is increased then players payoffs can still be
affected by the actions of others when they do not interact. At a cost of
even greater complexity joint messages do not have to be used. Perhaps the
strongest assumption that must be maintained is that costs are only affected
by the number of messages sent—not the identity of the sender and receiver.
If this assumption is relaxed then a general matching rule could have people
who deviate staying in the same small town forever and people who cooperate
bouncing around the globe—mneeding to send very costly messages.

I would like to explain two elements of the communication protocol that
initially seem counter intuitive. First even in games of one sided moral
hazard both people get references. This is because the stage game with
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communication has two sided moral hazard. Second, lying during the com-
munication game is always as bad as deviating during the stage game. In
a communication protocol people’s reputations are made or broken by other
people’s word. In a world where someone’s life can be ruined by a word
saying the wrong thing is naturally as bad as doing the wrong thing.

Clearly there are other mechanisms that can be used to enforce coop-
eration. Checking references—the reference phase—is common, but other
methods are often used in case of a deviation. Often when there is a physical
record of the interaction a court can be used to verify what occurred—this
was the method Milgrom, North and Weingast [13] found was used in the
champagne fairs of medieval Europe. What this paper shows is that such
records are unnecessary, even without them there can be cooperation.

One element that this paper does not illustrate is the possible interaction
between economic geography and cooperation. Ahn and Suominen [2] could
be considered a first step in this direction, but they do not consider how
their “neighborhoods” develop or analyze them as an equilibrium. Recently
attention has been paid to the development of social networks and their
effect on equilibrium. Jackson and Wolinsky [9] and Bala and Goyal [3]
have both developed interesting models of social networks, and Jackson and
Watts [10] have combined this with evolutionary game theory to consider
the development of networks. It would be natural to extend these papers
to consider the case where the reward from forming networks interacts with
the amount of cooperation that can be achieved..

Another question that should be explored is when these equilibria can
arise. While many examples of social norms can be found, one can also find
equivalent situations where social norms are not used. What can account
for this heterogeneity? A recent work that lends insight into this question is
Chwe [5]. He analyzes minimal social networks such that “revolutions” can
occur. Here the “revolution” would be adaptation of a social norm, and
weak social networks might lead to social norms not being used.

This paper presents the first self contained model of social cooperation.
It develops a lower bound on the benefits of cooperation that can make
self enforcing social agreements possible. When will this potential gain be
realized, and how? Since cooperative behavior is integral to a lot of economic
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interaction a deeper understanding of this point should be developed.
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