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Abstract

In stochastic evolution models, we show that there is an intermediate structure–the emergent seed–
that simplifies analyses.

Conditional on knowing this graph and the cost function, stochastic potential can be found with
path optimization. This makes finding two measures of waiting time–the coheight, (the precise waiting
time,) and the censored coradius, (a natural generalization of the modified coradius)–immediate. We
illustrate the technique in several applications, one of which is novel–the speed of evolution on the three
dimensional lattice. Among other results, we derive the first case where the true waiting time (coheight)
is strictly lower than the modified (censored) coradius.
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1 Introduction

That people involved in large repeated matching games do not calculate the law of motion is self-evident.

The law of motion is the current state of social behavior and how it will change in the future. Although this

information is needed to optimize, finding it is difficult. For example, the rules of dating used to be clear

but have been in constant flux in the past fifty years. One doubts that young people construct the large

sample across space and time that is necessary for formulating an optimal strategy–and even this would be

insufficient. To predict what others will do, they also need to understand others’ information collection and

processing techniques, which are usually not observable.

We cannot structurally model this type of interaction; however, we can make some deductions. First, it

is sensible and necessary to assume inertia. Second, we should observe a variety of simple decision rules.

The simplest is imitation (Robson and Vega-Redondo, 1996). A more complex model would have agents

take a sample across space and best respond or best respond with mutations (hereafter, BRM; Kandori,

Mailath, and Rob, 1993). More complex still would be using this sample to calculate expected payoffs and

take actions with probabilities proportional to payoffs, such as the logit model (Blume, 1993).

This final model has a wide basis in the psychological and experimental literature (see Alos-Ferrer and

Netzer, 2010). Additionally, it can be fully rational if we follow Harsanyi (1973) by accepting that preferences
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are heterogeneous (see Myatt and Wallace, 2003). Finally, it means that agents may take actions that (seem)

like errors. Because the first two models are too parsimonious for this implication, we always assume that

people make errors.

We now have models of stochastic evolution: inertia, a decision rule, and rare errors. We are interested

in the steady-state or long-run implications of these models. Our analysis relies only on the system being

strongly ergodic and rare errors, and our primitive is resistance–the key determinant of the unlikelihood of

a direct transition as errors become rare (Young, 1993a).

Finding the maximum likelihood (or stochastically stable) state(s) in this distribution is simplified by three

insights. First, when errors become unlikely, the distribution over a transition is dominated by the one that

determines its cost–the least resistance method. Freidlin and Wentzell (2012) show that the steady-state

likelihood can be analyzed as a static tree minimization problem. Finally, Young (1993a) shows that only

limit sets–sets with positive short-run likelihood–need to be analyzed. One finds a minimal cost-spanning

tree on a directed graph for each limit set and the solution is the stochastic potential.

This paper recommends an intermediate step–finding the emergent seed. The resulting representation

provides two measures of waiting time or the speed of evolution. The coheight is an exact measure, and is

the height (exit time) for all other limit sets (Beggs, 2005). The censored coradius is a generalization of the

modified coradius (Ellison, 2000).

A seed is a graph over the states such that every state has an exiting transition and some states are

transitioned to from all other states. An exiting transition from a state is one that, after it occurs, evolution

is unlikely to return to that state in the short run. The largest set of states that is transitioned to from

all other states is called the hub of that seed. One then constructs trees by including a transition from this

hub to the state in question. It is an optimal seed if the resulting tree always has the stochastic potential of

the state in question. These structures exist and in general there will be a class of them. We also wish this

optimal seed to arise from local analysis or be emergent.

To do this, we will iterate the concept of the limit set. One finds limit sets by constructing a graph of

the zero resistance transitions. The probability of these transitions increase as errors become rarer. Of this

graph, the states, cycles, and circuits1 that have no exiting transitions are the limit sets.

If only one limit set exists, then the analysis terminates. However, there are frequently more limit sets.

The conventional approach at this point is to calculate stochastic potentials. We recommend iterating the

limit set methodology. Bortz, Kalos, and Lebowitz (1975) point out that these limit sets must transition

to each other. Furthermore the most likely (least resistance) transition will become infinitely more likely as

errors become rarer. Thus we should normalize the resistance for exiting transitions. Our new resistance will

normalize exiting transitions by making the least cost zero. The cost of this transition is the radius (Ellison,

2000). When we subtract the radius from the cost of an exiting transition we have the first difference

resistance; it is the same as the modified cost (Ellison, 2000). This new resistance will have new (and fewer)

limit sets, which we call first iteration limit sets. We iterate this procedure until there is only one limit set

in the final iteration. The graph we generate to find this limit set is the emergent seed and the hub is the

unique limit set in our final iteration.

The benefit of this approach is that we replace the global restriction of transitioning to a state with the

local restriction of exiting a limit set. For example, using this approach, we will find the speed of evolution

1These are sets of intersecting cycles. This terminology is from Levine and Modica (2014b).
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on a three-dimensional lattice. Ellison (1993) found the speed of evolution on a one-dimensional lattice, and

Ellison (2000) extends this to two dimensions, but three or higher is still an open question. This literature

considers a classic coordination game using BRM. Because matching must be done on the lattice, there

can be geometric areas of agents using the risk-dominant strategy and others using the other strategy. For

example, in two dimensions, a square of agents using the risk-dominant strategy is stable. We solve the

problem for three dimensions by using only local analysis. All we need to know is to where a limit set is

most likely to transition. It is fairly obvious that it will either go "up" (to a limit set in which more agents

play the risk-dominant action) or "down" (in which fewer do). In three dimensions, this results in a tipping

point, above which one transitions to the first iteration limit set containing the state in which everyone plays

the risk-dominant action, and below which one transitions to a first iteration limit set containing the state

in which no one does. Because one knows what will happen at the next iteration when there are only two

first iteration limit sets, further analysis is not necessary. Indeed, the speed of convergence is given by the

modified coradius. For a detailed analysis, the reader should turn to Section ??. Note that at no point did

we actually use any new technology to solve this problem. Rather, the emergent seed gave our analysis a

new focus.

This result highlights an aspect of the emergent seed. Although it may be enlightening, it is useful.

This point has been proven by the literature, in which the vast majority of applications implicitly use this

technique, such as the first application: the Nash Demand game (Young, 1993b). The article finds the most

likely transition from each limit set (the radii) and shows that a graph of these transitions has one cycle (the

hub) and, finally, that something in this cycle has the highest radius (hub dominance). Binmore, Samuelson,

and Young (2003) propose this as a test (the naive minimization test) but have no recommendations if it

fails. We recommend continuing to analyze the emergent seed. For example, in the Contract game (Young,

1998), this approach finds a closed form objective function (Section 6.1).

The other common solution methods are either sufficient (radius/(modified) coradius) or guess and verify

(root switching). Root switching is our terminology for the standard method. In this argument, one hy-

pothesizes that a given state is stochastically stable and then either verifies or contradicts this by switching

the root of its minimal cost tree. Young (1993a) uses this technique, which is very powerful. For example,

Binmore, Samuelson, and Young (2003) use it to prove the radius/coradius theorem (Ellison, 2000). We

expect that this technique could construct the emergent seed.

The radius/(modified) coradius technique (Ellison, 2000) is a sufficient methodology. The radius being

higher than the (modified) coradius is a sufficient condition for stochastic stability. This is at its best when

little is known about the model. For example, Bergin and Bernhardt (2009) use it to prove a general result.

In most other cases, we have found that either the analysis identifies the emergent seed or the distance

between sufficiency and necessity is significant. One example in the latter class is the Gift Giving game; see

Section 6.2.

We know of three other solution techniques in the literature. Beggs (2005) proposes an iterative height

algorithm. Height is the expected exit time for a set of states, and the algorithm suggests that we discard

states with a low height in each step. Rozen (2008) transforms the primal problem into a dual problem. Cui

and Zhai (2010) propose a cyclic decomposition methodology that finds the most likely cycles in the process

of evolution and continues iteration until all limit sets are linked into one grand cycle. Unfortunately, these

methodologies have yet to be used in applications.
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The emergent seed is not always the best methodology. A better one is to directly characterize the limiting

distribution, which can be done in the logit model when the game has a potential (Monderer and Shapley,

1986), and sometimes in other models. Examples are Fudenberg and Imhof (2006), Sandholm (2007), and

Kandori, Serrano, and Volij (2008). However, the emergent seed may be useful to find the speed of evolution;

see Section 5. Furthermore, robustness arguments often will not benefit from the emergent seed. Kandori

and Rob (1998, half dominance), Ellison (2000, half dominance), Peski (2010), and Sandholm (2010) find

local characteristics of an equilibrium that imply that it will be stochastically stable. The emergent seed is

a global characteristic. As well, the results of the speed of evolution in Montanari and Saberi (2010), Young

(2011), and Kreindler and Young (2012) are robust to the graph and, thus, the emergent seed. Robust

stochastic stability might benefit (Alos-Ferrer and Netzer, 2012), which generalizes the radius/coradius test,

and the total radius/censored coradius might be used in these arguments.

The reader familiar with the literature on the minimal cost spanning tree will recognize that our algorithm

is a modification of Edmonds’ Algorithm (Edmonds, 1967–first published by Chiu and Liu, 1965). This

is not surprising because it is the unique algorithm for this problem in mathematics. Rozen (2008) is the

first paper in the stochastic evolution literature to explore the link. Earlier papers–Noeldke and Samuelson

(1993), Samuelson (1994), and Kandori and Rob (1995)–use one or two iterations of the algorithm, and

Troger (2002) uses it in an application. We are not the first to use it to analyze the global problem–this was

done by Humblet (1983). What is novel is our modification. At each step, we drop states that are outside

of cycles, resulting in fewer iterations and, thus, greater analytic efficiency.

Given that Edmonds’ algorithm may be the unique optimum, that it has been rediscovered is not sur-

prising. It is well known that Bock (1971) rediscovered it in computer science. Our methodology benefited

from a rediscovery in Monte Carlo simulations–Bortz, Kalos, and Lebowitz (1975). Freidlin and Wentzell

(2012) rediscovered it in the theory of large deviations. Cui and Zhai (2010) rediscovered it in stochastic

evolution. The last two are similar to Humblet (1983) because they do not specify a root.

In the Edmonds’ algorithm, the initial step is to have each state point at the state(s) in which it has the

least resistance for transitioning to (which might be itself). One then finds the limit sets in this graph and

treats them as states. Next one iterates, for these new "states" one finds the least resistance outside of that

set. We find new cycles in this graph, and so on. Notice that any state that is not in a limit set is analyzed

until it becomes part of a "limit set." The modified algorithm in Cui and Zhai (2010) is interesting because

it first drops states that are not in limit sets, and then follows the Edmonds’ algorithm. We note that this

modification introduces an asymmetry in their approach. They use the limit set methodology and then they

switch to a different one. Instead, we iterate the limit set algorithm. The first iteration of both techniques

will result in the same graph. In the next stage, we call the cycles in this graph first iteration limit sets,

and all other states are in the first iteration outer basin(s) of attraction of one (or more) of them.2 We then

continue to only analyze the new limit sets, indicating that we have fewer objects to analyze at each iteration,

and finishing our algorithm requires fewer iterations. The cost is that we cannot solve the problem using

only this methodology. In the end, we must calculate the cost of a path from the hub to a limit set to find its

stochastic potential. In contrast, Cui and Zhai (2010) derive a completely novel characterization theorem,

but their methodology requires more iterations. For more details on this topic, please turn to Section 7.

We know of two alternative algorithms. Beggs (2005) shows that one can iteratively discard sets of states

2A state is in the outer basin of attraction of a limit set if it can transition to it at zero cost.
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with a low height (expected exit time). Trygubenko and Wales (2006) find an algorithm that does not

require iteration in the field of Monte Carlo simulations. That paper analyzes waiting time for a given root;

however, similar to Bortz, Kalos, and Lebowitz (1975), it may be generalizable.

Kandori and Rob (1995) introduce optimized cost, which we simply call cost. The other key tools in

our analysis–the basin of attraction, radius, and modified cost–were all introduced in Ellison (2000). The

emergent seed is constructed by iterating these concepts. Rozen (2008) is the closest paper to ours. It

uses Edmonds’ algorithm to transform the primary problem into a dual problem and mentions that the

algorithm only needs to be implemented once, and derives a restrictive version of local hub dominance and

an alternative coradius measure.

We next turn to describing the general model in Section 2. We then describe how to find the emergent

seed in Section 3; Section 4 presents the characterization; and Section 5 presents two measures of waiting

time. In Section 6, we turn to a survey of the applied literature, including one new application and a re-

analysis of two others. Next, we turn to a discussion of other methodologies, including an analysis in which

our methodology fails in Section 7. Finally, we conclude in Section 8. Proofs of propositions and theorems

are in Section 9, and all other proofs and some supplementary materials are in the Online Appendix.

2 The Model

Our notation generally follows Ellison (2000). The fundamental is a finite set of states of the world, denoted

Z. These states will often be social, or the strategies of all agents. For example, if we have uniform random

matching, then it can be a distribution over the strategies. We endow the states of the world with a Markov

transition matrix, Pβ, which must be (strongly) ergodic. This restriction is satisfied because agents make

errors. The goal of our analysis is to identify the steady state distribution which we represent as a row

matrix, µβ:

µβ = µβPβ . (1)

This will also be the long-run distribution but is of interest because it is self contained.3

For arbitrary Pβ, µβ might be very dispersed and uninformative; however, in the problems in which

we are interested, as 1/β becomes small, µβ becomes concentrated. Pβ (x, y) can be decomposed into two

functions. The first, the weighting function, is a strictly positive and bounded function of minor interest.

The second is a resistance function (Young, 1993a) r : Z ×Z → R ∪∞. For β > 0, Pβ (x, y) is proportional

to e−βr(x,y)/
�

z∈Z
e−βr(x,z) and if r (x, y) > r (x, z), then the relative likelihood of transiting to y rather than

z is proportional to e−β[r(x,y)−r(x,z)], which converges to zero as β → ∞. This results in µβ being more

concentrated. We normalize the resistance such that it is non-negative and, for all x, there is a y such that

3Note that since µβ is a row matrix Pβ (x, y) is the probability of transitioning from x to y. This makes our notation for the
matrix and functions consistent.
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r (x, y) = 0.4 We illustrate resistances using the classic coordination game with σ ∈ [0, 1]:

A B
A 1− σ, 1− σ 0, 0
B 0, 0 σ, σ

. (2)

Assume one population and uniform random matching. Let z = nz/n where nz is the number of agents

playing A and n is the population size. Note that A is the best response if z ≥ σ.

Then, resistance in the best response with mutations (hereafter BRM) is:

r (x, y) =






0 if y ≥ x ≥ σ or y ≤ x ≤ σ
n |x− σ| if y ≥ σ ≥ x or y ≤ σ ≤ x
n |x− y| else

. (3)

The resistance is the number of agents who must switch away from the best response. If x ≥ σ then agents

should switch to A, and if y ≤ x then some must switch to B. If y ≤ σ then n |x− σ| must switch to the

wrong strategy, if y ≥ σ then n |x− y| must switch.

In the logit model, only one agent at a time can change strategy and the state always affects the resistance.

The resistance is:

r (x, y) =






∞ if n |x− y| > 1
0 else if y ≥ x ≥ σ or y ≤ x ≤ σ

|x− σ| else
. (4)

Remember that x = nx/n and y = ny/n; thus, if n |x− y| > 1, then more than one agent must have

changed strategy. Thus, resistance is infinite and Pβ (x, y) = 0. Resistance is zero in the same cases as BRM.

Otherwise, if x is close to σ, then both strategies have nearly the same expected utility, and the resistance

is small.

The definition of a limit set is:

Definition 1 (Limit Set) A limit set is a minimal set θ ⊆ Z such that ∀s ∈ N limβ→∞Pr (zt+s /∈ θ|zt ∈ θ)→

0.

We denote the family of these limit sets as Θ. Note that because the system is ergodic it will exit any

limit set. The terminology references the noiseless system.

Because the emergent seed is found by iterating the concept of a limit set, we present two characterizations

of limit sets. The first one is based on graphs, and we use this technique when iterating. In the literature,

a graph is either a list of ordered pairs or a matrix. We will use the matrix representation. Thus, a graph

is a matrix G that has dimensions #(Z)×#(Z), and if we transition from x to y, then G (x, y) = 1, and

G (x, y) = 0 otherwise. We remind the reader that Z is the set of states, and X and Y are subsets. All other

Latin letters in this analysis are matrices. For example, r is a function with domain Z × Z and, thus, also

a matrix with dimension #(Z)×#(Z). We have already introduced the Markov transition matrix as Pβ.

The resistance of a graph is:

r (G) = Σz∈ZΣẑ∈Zr (ẑ, z)G (ẑ, z) (5)

= vec (r)′ vec (G)

4For examples in which the resistance is naturally strictly positive or sometimes negative, consider transportation problems.
Holding a good in a warehouse has a positive cost. Thus, in some analyses, every action will be costly since one pays for

either shipment or storage.
If resistance is the amount of energy used to transition, then a state on a hill would have a negative resistance to nearby

lower states. The transition would create energy.
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For a m× n matrix G, vec (G) is the mn× 1 matrix achieved by stacking the columns of G on top of each

other, and G′ is the transpose of G. To complete the transformation, we describe X ⊆ Z as a row matrix,

where x ∈ X means that the x’th entry is one, and zero otherwise. Then, we can work neatly with Boolean

algebra, the notation is for {x, y} ∈ {1, 2, 3, ...,#(Z)}2
�
G ∪ G̃

�
(x, y) = max

�
G (x, y) , G̃ (x, y)

�
, G ⊆ G̃

means G (x, y) ≤ G̃ (x, y),
�
G\G̃

�
(x, y) + G̃ (x, y) ≤ 1, and

�
G ∩ G̃

�
(x, y) = min

�
G (x, y) , G̃ (x, y)

�
.

A limit set can be characterized as a set of zero resistance cycles. A graph that has zero resistance has

an underbar; thus, G has r (G) = 0. A cycle is a path that begins and ends at the same state. The standard

notation for a path is Q. It is a path from x to y if there is a sequence (zs)
S
s=1 with z1 = x, zS = y and

ΠS−1
s=1Q (zs, zs+1) = 1, and for z ∈ Z, ẑ ∈ Z\ (zs)

S
s=1 Q (z, ẑ) = 0. Let the set of these paths be {Q (x, y)}.

Then, a cycle for x is a path that begins and ends at x: Q ∈ {Q (x, x)}.

An alternative characterization of limits sets uses the optimized resistance or cost function. Because we fo-

cus on the steady state, we are interested in Pr (zt+s = y|zt = x) for s ≤ #(Z) instead of Pr (zt+1 = y|zt = x).

For fixed β, this probability is a distribution over the paths from x to y. However, as β →∞, this distribution

will be dominated by the most likely (least resistance) path(s):

c (x, y) = min
Q∈{Q(x,y)}

vec (r)′ vec (Q) . (6)

Note that c (x, y) <∞ by strong ergodicity and that for subsets, X ⊆ Z and Y ⊆ Z, the transition will be

dominated by c (X,Y ) = minx∈X,y∈Y c (x, y). It is fairly immediate that:

Lemma 1 A limit set θ ⊆ Z can be characterized as either:

1. A (degenerate) cycle or set of intersecting cycles such that:

(a) ∀x ∈ θ, θ =
	

Q∈{Q(x,x)}



	

z∈Z

Q (z, ·)

�

=
�

Q∈{Q(x,x)}

�
�

z∈Z
Q (z, ·)


and

(b) ∀z ∈ Z\θ,
�
Q (x, z)

�
= ∅.

2. Or a set such that for all x ∈ θ:

(a) for all y ∈ θ c (x, y) = 0

(b) for all z ∈ Z\θ c (x, z) > 0.

We will show the reader how to find them both in a familiar application–the Nash Demand Game

(Young, 1993b)–and for an arbitrary resistance.

Example 1 The Limit Sets in the Nash Demand game: We will use BRM with two population

uniform matching as our underlying dynamics. There will be n agents in each role that will be uniformly

matched into pairs. With probability ρ ∈ (0, 1), agents use the strategy they used during the last period. With

probability 1− ρ, they will choose a new strategy. If they choose a new strategy, it will be a best response to

the current distribution of strategies with probability 1− e−β, and it will be a strategy chosen at random with

probability e−β.

The bargaining problem is a pair of continuous, concave, and strictly increasing utility functions, ui (x),

A1 = A2 = [0, 1], and a pair (a1, a2) is feasible if a1 + a2 ≤ 1. For a feasible pair, i gets ui (ai); otherwise, i
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gets zero. We have normalized the disagreement point to zero and assume that there is an open set of feasible

(a1, a2) such that mini∈{1,2} ui (ai) > 0. We need a finite number of strategies; thus, for δ > 0 such that 1/δ

is an integer, let Ai (δ) = {0, δ, 2δ, ..., 1}. In the Nash Demand game, the strategy sets (Si) are simply Ai, or

each role submits demand si. If (s1, s2) is feasible, then i gets ui (si); otherwise, they receive zero.

It is easy to prove that every strict Nash equilibrium is a limit set. Because both parties are getting a

strictly positive payoff, the unique best response at a strict Nash equilibrium is that equilibrium. The more

difficult step is to show that there are no others. There are two cases. The first case is that the best one party

can get is zero in the current state. In this case, we can have all agents in that population change strategy

this period to their part of a strict Nash equilibrium with positive probability. In the next period with positive

probability, everyone in the other role will best respond. The second case is that, in the current state, there

are at most two optimal strategies. Again, with positive probability, we choose everyone in that population

to change strategy, and they all choose the same best response. Either we now have one half of a strict Nash

equilibrium or the best the other party can get is zero, placing us in one of the cases above. Thus, we showed

that there is always a zero cost path from every other state to a strict Nash equilibrium and these can be the

only limit sets.

The problem with this example and most in the literature is that the set of strict pure strategy Nash

equilibria are the limit sets. An arbitrary example allows us to illustrate other possibilities. In this arbitrary

case, it is best to characterize limit sets as cycles in the graph of zero resistance transitions. This graph is:

Figure 1: x → y means r (x, y) = 0, states are circles, limit sets are bolded circles (if states) and bolded
dashed ovals (if sets). Assume r (x, x) = 0.

This resistance is sparse. In most analyses, points will be similar to xa or xb with multiple zero resistance

paths. This resistance allows us to discuss many types of limit sets. The first, θa, is similar to a strict

pure strategy equilibrium in BRM or Logit. From all nearby states, one moves toward it. The second, θb,

is an unstable mixed strategy equilibrium in BRM if agents only change strategy when it strictly improves

their payoff. It is also the default in a transportation problem. The third, θc, probably only occurs in a

transportation problem. It is a "river mouth"–many states are connected to it but few of them are nearby.
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The fourth, θd, is a simple cycle. The fifth, θe, is a proper circuit (Levine and Modica, 2015) or a set of

intersecting cycles. Note that the set Xc is a limit set except for the second part of the characterization.

There is a zero resistance path from Xc to θc.

A key step in our analysis of the Nash Demand game was to show that a zero cost path exists from every

other state to a limit set. Formally, we showed that they were all in the outer basin of attraction of a limit

set.

Definition 2 The outer basin of attraction of X ⊆ Z is D̄ (X) = {z ∈ Z|c (z,X) = 0}.

This is not the more common concept of the basin of attraction (Ellison, 2000). In that definition, states

must reach θ with a probability that converges to one, or D (X) =
�
x ∈ D̄ (X) : ∀z ∈ Z\D̄ (X) c (x, z) > 0

�
.

In Figure 1, xa is in no basin of attraction but is in the outer basin of θa and θd, whereas xb is in the basin

of θa. In the Nash Demand game, we showed that every state is in the outer basin of attraction of a limit

set, and the basins of attraction are much smaller. These are states from which the unique best response for

both populations is the strict Nash equilibrium. This illustrates that the basins of attraction (∪θ∈ΘD (θ))

may be a strict subset of Z, whereas with the outer basin for θ �= θ̃ we can have D̄ (θ)∩ D̄
�
θ̃
�
�= ∅. We note

that if x is not in a limit set we might have D̄ (x) = ∅.

The focus of our analysis is exiting paths. These are paths from x to some y ∈ Z\D̄ (x). Of course we

will be most interested in the most likely or least cost. For X ⊆ Z the least cost exiting path determines

the radius (Ellison 2000):5

R (X) =

�
minz∈Z\D̄(X) c (X, z) D̄ (X) ⊂ Z

∞ D̄ (X) = Z
, (7)

We note that this cost does not depend on whether we exit D (X) or D̄ (X). Because the radii of limit sets

are very important for our analysis, we characterize them in the Nash Demand game.

Example 2 The Radii in the Nash Demand game: First, we mention that when one analyzes BRM

with uniform matching, a cost is generally characterized as c (x, y) = ΣS
s=1 ⌈nps⌉ where ⌈x⌉ is the least

greater integer than x and ps ∈ [0, 1]. Because the size of the population is not important, it is convenient

to normalize this by n and write c (x, y) /n = ΣS
s=1ps.

To determine the radii, we need to find the "best invaders," in other words, the agents who most quickly

make one part of the equilibrium strategy not a best response. In the Nash Demand game, an invading

population can demand either more or less. Let a limit set θ be θ = (θ1, θ2) = (θ1, 1− θ1). First consider

demanding more and let p+1 (θ, k) be the mass of agents demanding 1− θ1+ kδ to make θ1 − kδ as good of a

response as θ1 for role one, then p+1 (θ, k) is:

�
1− p+1 (θ, k)

�
u1 (θ1) = u1 (θ1 − kδ) (8)

because if the players in population one reduce their demand they get it from everyone. Therefore:

p+1 (θ, k) = (u1 (θ1)− u1 (θ1 − kδ)) /u1 (θ1) , (9)

5The radius and the basin of attraction both predate Ellison (2000); however, this is the most familiar paper to introduce
them in economics.
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and it is clear the best candidate in this class has k = 1, they should demand only a little more. In contrast,

if they demand less, the asymmetry is reversed. If a player keeps her current demand, she will get it from

everyone. Thus if invaders demand s2, 1− s2 is a best response if:

u1 (θ1) = p−1 (θ, s2)u1 (1− s2) (10)

p−1 (θ, s2) = u1 (θ1) /u1 (1− s2)

and thus the optimal demand is s2 = 0. Let p+i (θ) = p+i (θ, 1), p−i (θ) = p−i (θ, 0) for i ∈ {1, 2}. Then for

all θ, R (θ) /n = min
�
p+1 (θ) , p+2 (θ) , p−1 (θ) , p−2 (θ)

�
. Note that as δ → 0 max

�
p+1 (θ) , p+2 (θ)

�
→ 0 while

min
�
p−1 (θ) , p−2 (θ)

�
is large and constant. This allows us to conclude that for small enough δ, R (θ) /n =

min
�
p+1 (θ) , p+2 (θ)

�
.

Lemma 2 If δ is small enough and p+1 (θ) < p+2 (θ) or

(u1 (θ1)− u1 (θ1 − δ))u2 (1− θ1)− (u2 (1− θ1)− u2 (1− θ1 − δ))u1 (θ1) < 0 (11)

thenR (θ) /n = (u1 (θ1)− u1 (θ1 − δ)) /u1 (θ1) or the cost of transitioning from (θ1, 1− θ1) to (θ1 − δ, 1− θ1 + δ).

Condition 11 is the derivative of the Nash bargaining objective function in difference form.

The representation theorem requires that we estimate the probability of getting to x from every y ∈ Z\x.

We estimate this using trees with root X ⊆ Z. In a tree, once we get to X we stop, and from every y ∈ Z\X,

there is a path to X. Mathematically, Σx∈XΣy∈ZT (x, y) = 0, ∀y ∈ Z\X ∃ (zs)
S
s=1 with z1 = y, zS ∈ X and

ΠS−1
s=1 T (zs, zs+1) = 1. Let the set of these graphs be {T (X)}. Then, the stochastic potential of X ⊆ Z is:

sp (X) = min
T∈{T (X)}

vec (r)′ vec (T ) = min
T∈{T (X)}

r (T ) ; (12)

and x is stochastically stable if x ∈ argminz∈Z sp (z). This implies that limβ→∞ µβ (x) > 0.

A contribution of Young (1993a) was to illustrate that the complexity of this problem depends on #(Θ)

rather than #(Z), we reprove his main theorem in the appendix.

Lemma 3 For θ ∈ Θ

sp (θ) = min
T∈{T (θ)}

vec (c)′ vec (T ) = min
T∈{T (θ)}

c (T ) , (13)

and thus can be characterized as a tree over Θ. For all x ∈ Z

sp (x) = min
θ∈Θ

[sp (θ) + c (θ, x)] . (14)

Notice the potential for double counting in the statement (13). The cost function is over paths and that

statement is only true because a least resistance tree will always use these paths. Indeed this is the heart of

the proof. The second part (14) is because any z ∈ Z that is not in a limit set can not be an (important)

junction–i.e. the first time two paths to the root merge. Without loss of generality one (or more) of these

paths can go to some θ such that z ∈ D̄ (θ) at zero cost.
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3 The Emergent Seed

While a dynamic process, most of the time evolution will be stable. As Levine and Modica (2013) discuss

most events will fail to escape a limit set’s basin of attraction and simply return to that limit set. However

this makes understanding exiting transitions all the more critical, these rare events are the ones that will

determine the process of evolution. Since transitions are necessary to reach the stochastically stable state(s)

understanding them is also vital to finding stochastic potential. What can we know about these transitions?

Well as 1/β becomes small they will be concentrated on the most likely transitions. Which most likely

transitions should we use? This is not only a local problem. While a given transition might be very likely it

might require other unlikely events to occur. We must approach this problem globally. Thus the emergent

seed is the most likely collection of exiting transitions.

The initial step in this analysis was laid out in Ellison (2000). There the radius–the cost of the optimal

exiting transition(s)–is defined. Here we are interested in creating a graph using these transitions, or the

limit set(s) that achieve the radius. For a great many papers in the literature this results in the emergent

seed, so let us return to our abstract example to illustrate a more complex case.

Figure 2: θ� θ̃ if c
�
θ, θ̃
�
= R (θ)

The radii are arbitrary and the similarity between Figure 2 and Figure 1 is obvious. While we have not

specified the resistance we seem to have two "first iteration limit sets": θ1a ⊇ {θa, θd} and θ1b ⊇ {θc, θe}, and

it should be clear that we need to continue. How should we continue? How should we find the best path

between θ1a and θ1b?

To find the most likely collection of exiting transitions we have to consider what will happen when we

use a transition. Here we have the choice between having θa transition to θ1b and having θd. The cost of the

first graph will be c (θd, θa) + c
�
θa, θ

1
b

�
the cost of the second will be c (θa, θd) + c

�
θd, θ

1
b

�
. We wish to use

11



the second option if:

c (θd, θa) + c
�
θa, θ

1
b

�
> c (θa, θd) + c

�
θd, θ

1
b

�
(15)

c
�
θa, θ

1
b

�
− c (θa, θd) > c

�
θd, θ

1
b

�
− c (θd, θa) = c

�
θd, θ

1
b

�
−R (θd) .

Thus what matters is the difference in the cost between going to a given limit set and going to the argument

that achieves the radius, we call this the first difference resistance. This is what Ellison (2000) refers to as

the modified cost. It is:

∆r (x, y) =

�
c (x, y)−R (x) if y ∈ Z\D̄ (x)

c (x, y) else
, (16)

and remember that if x is not in a limit set R (x) = 0.

Definition 3 The emergent seed is the result of the following algorithm:

0. For each state normalize the least resistance transition to zero. Let E0 be the graph of these least

resistance transitions, and for m ≥ 1:

m. If possible, for each state and exiting transitions from that state normalize the least cost to zero. Let

Em be Em−1 and the collection of new least cost exiting transitions.

When for some states it is no longer possible to find exiting transitions the process terminates. The

result is the emergent seed, denoted E∞.

The states for which one can not find exiting transitions will be the hub (θ∞), and this process terminates

in less than ln# (Θ) / ln 2 steps.

For our characterization let us go into more detail. When necessary we will denote a limit set with regards

to r (·, ·) as θ0, and the collection as Θ0, likewise ∆0r (·, ·) = r (·, ·), ∆0c (·, ·) = c (·, ·) ,∆0R (·) = R (·) and

∆0D̄ (·) = D̄ (·). Then given ∆r (·, ·) (defined above) we derive ∆c (·, ·) and let a limit set with regards

to this cost be denoted as θ1 with the collection being Θ1, for each θ1 there is a ∆D̄
�
θ1
�
, and finally

∆R
�
θ1
�
= minθ̃1∈Θ1\θ1 ∆c

�
θ1, θ̃1

�
. We then iteratively define:

∆mr (x, y) =

�
∆m−1c (x, y)−∆m−1R (x) if y ∈ Z\∆m−1D̄ (x)

∆m−1c (x, y) else
, (17)

and repeat the process just mentioned to find ∆mc (·, ·), θm ∈ Θm, ∆mD̄ (θm), and ∆mR (θm). The final

cost function is denoted ∆∞c (·, ·) and the last limit set (the hub of the emergent seed) is θ∞. Please note

that for k < m it is possible that z /∈ θk for all θk ∈ Θk and z ∈ θm.

Example 3 The emergent seed in the Nash Demand game: When finding the radii in this game,

we specified the limit set that was transitioned to. Specifically, if p+1 (θ) < p+2 (θ), then we transitioned

to θ̃ = (θ1 − δ, 1− θ1 + δ). If p+1

�
θ̃
�

< p+2

�
θ̃
�
, next we transition to (θ1 − 2δ, 1− θ1 + 2δ). Thus, we

transition in a linear fashion to the point at which (θ1, 1− θ1) can transition to (θ1 − δ, 1− θ1 + δ) and

(θ1 − δ, 1− θ1 + δ) can transition back. This is the unique first iteration limit set and it took one iteration

to find the emergent seed.
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There is a useful alternative representation for the difference resistance. Let y ∈ Z\
�
∪m−1
m̃=0∆

m̃D̄ (x)
�
and

m̂ < m be the largest m̂ such that there is a θm̂ ∈ Θm that contains x, and θ̃m̂ be such that ∆m̂c
�
θm̂, θ̃m̂

�
=

∆m̃R
�
θm̂
�
, then:

∆mr (x, y) = c (x, y)− c
�
θm̂, θ̃m̂

�
. (18)

The Emergent seed might be over connected. It is feasible that a given state (or limit set) might have

more than one state (respectively limit set) that determines its radius. This is appropriate because the

Emergent seed clarifies the possible paths of evolution, and if two paths have the same (m’th difference)

cost it needs to point out that either is equally likely. However to construct stochastic potential this double

counting is a problem. Thus we use something similar to a tree with root θ∞.

Definition 4 We say that S∞ ⊆ E∞ is admissible if it is a tree with root θ∞ except that if possible every

θm has one exiting transition for all m.

This is not a tree because states in the hub (θ∞) will still have exiting transitions. We could define it

without the tree requirement, but in application it will always be a tree with root z ∈ θ∞. Note that an

implication of equation 18 is that:
∞�

m=0

∆mR (x) = c
�
θm̂, θ̃m̂

�
, (19)

for unconstrained m̂. This makes it transparent that:

Lemma 4 For any admissible S∞ by construction its cost is Σ∞m=0Σθm∈Θm∆mR (θm) and this is also

c (S∞).

4 A Characterization

With the emergent seed in hand it is surprisingly direct to find stochastic potentials. Obviously we must

have a path from the hub (θ∞) to the state in question (x), thus we should include one. Given this, we

already have an efficient method to reach the hub from every state (an admissible S∞ ⊆ E∞) thus it would

seem sensible to use it. Obviously if we use that we need to drop the path from our state (x) to the hub.

Notice that since S∞ is not a tree because then we can use the ∆∞c (·, ·) cost function, and the first step

will change the cost of the step within θ∞ into a cost of going towards x.

Is this first approximation optimal? By construction the emergent seed is the most likely (least cost)

graph of transitions, so changing it unnecessarily will increase the cost of the tree with root x. We must

change it by including a path from θ∞ to x, and using the cost function ∆∞c (·, ·) means we increase the

cost of the graph as little as possible. We should make no other changes, even those that do not change the

cost are unnecessary.

Allow me to comment on this. The results of Young (1993a) state we only need to solve a tree minimization

problem for each state. We have shown that if we find the emergent seed–using local analysis–then we

solve a path minimization problem for each state.

Before writing our characterization, notice that there is a convenient change of basis. Since c (S∞) is a

constant it will not affect analysis, so we define the likelihood potential of a state as lp (x) = c (S∞)− sp (x).
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Theorem 1 For admissible S∞ ⊆ E∞ let lp (x) = c (S∞)− sp (x) then for x ∈ Z:

lp (x) =
∞�

m=0

∆mR (x)−∆∞c (θ∞, x) , (20)

and x is stochastically stable if it has maximum likelihood potential.

The likelihood potential is similar to the radius/(modified) coradius theorem (Ellison, 2000). If the radius

is larger than the (modified) coradius, then a limit set must be stochastically stable. We find that having

a high total radius (
∞�

m=0
∆mR (θ)) and a low hub attraction rate (∆∞c (θ∞, θ)) increases the likelihood

potential. The (total) radius is a measure of how long it takes to leave a state, and the (modified) coradius

or hub attraction rate are both measures of how long it takes to get there–although none of these concepts

are precise.

A common solution method in the literature is to implicitly find the hub and then note that something

in the hub has a high radius. We call this hub dominance and note that it is easily sufficient.

Corollary 1 (Hub Dominance) If there is a θ such that θ ⊆ θ∞ and for all θ̃ ∈ Θ
∞�

m=0
∆mR (θ) ≥

∞�

m=0
∆mR

�
θ̃
�
, then θ is stochastically stable.

The Nash Demand game is solved by hub dominance. However, we need a further restriction to make it

simple to characterize the likelihood potentials.

Example 4 Stochastic Stability and Likelihood Potentials in the Nash Demand game: Note

that the function R (θ) /n = min
�
p+1 (θ) , p+2 (θ)

�
is tent-shaped: p+2 (θ) is strictly increasing and p+1 (θ)

is strictly decreasing. The maximum is characterized as the point(s) at which θ p+2 (θ) ≤ p+1 (θ) and at

θ̃ = (θ1 + δ, 1− θ1 − δ) p+2

�
θ̃
�
≥ p+1

�
θ̃
�
. This also characterizes the hub, and hub dominance tells us that

something in the hub is stochastically stable. It will be the Nash Bargaining solution(s) on the finite grid.

Finding likelihood potentials is more difficult because we must know whether taking two small steps is

better than taking one large step.

Lemma 5 If for all θ ∈ Θ

max
�
p+1 (θ) p+1 (θ1 + δ, 1− θ1 − δ) , p+2 (θ) p+2 (θ1 − δ, 1− θ1 + δ)

�
< min

�
p+1 (θ) , p+2 (θ)

�
(21)

then for θ such that θ1 > maxθ̃⊆θ1 θ̃1 the likelihood potential is:

lp (θ) /n = p+1 (θ)−

K(θ)−1�

k=0

�
p+2

�
θ̂
�
− p+1

�
θ̂
� ����θ̂ =

�
max
θ̃⊆θ1

θ̃1 + kδ, 1−max
θ̃⊆θ1

θ̃1 − kδ

�����

�
(22)

where K (θ) =
θ1−maxθ̃⊆θ1 θ̃1

δ is the number of steps between this limit set and the hub.

As δ → 0, max
�
p+1 (θ) , p+2 (θ)

�
→ 0 thus, Condition 21 will be satisfied for small δ.
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5 Two Measures of Waiting Time

Waiting time is linked to the stochastic (or likelihood) potential; thus, the characterization allows us to find

the speed of evolution. We give two different measures. The coheight is precise but sometimes difficult to

use and understand. The censored coradius is a generalization of the modified coradius (Ellison, 2000), often

easier to use, and sometimes a method to establish stochastic stability. Our objective is now the log waiting

time of θ, or:

ln τ (θ) = lim
β→∞

lnEβ (min s|zt+s ∈ θ, zt ∈ Θ\θ)

β
. (23)

Beggs (2005) derives a general formula for this. The height of a set is the expected waiting time to exit that

set. The log waiting time is the coheight or the expected waiting time to exit Θ\θ. We write this as:

ln τ (θ) = Ch (θ) = H (Θ\θ) = max
θ̃∈Θ

lp
��

θ, θ̃
��

− lp (θ) , (24)

where lp (X) is the likelihood potential of X ⊆ Z.

It would seem that finding lp
��

θ, θ̃
��

will be difficult. How do we know whether to have limit sets

transition to θ or θ̃? The emergent seed provides a simple answer to this question. Since we want to use it

as much as possible we need only ask whether we should have the hub transition to θ or θ̃.A small detail is

that sometimes we might also have double counting, if for some m
�
θ, θ̃
�
⊆ θm then all further transitions

from θ and θ̃ will be the same. Thus define:

m
�
θ, θ̃
�
=

�
min

�
m|∃θm ∈ Θm,

�
θ, θ̃
�
⊆ θm

�
if one exists

∞ else
, (25)

using this term our characterization is:

lp
��

θ, θ̃
��

=
∞�

m=0

∆mR (θ) +

m(θ,θ̃)−1�

m=0

∆mR
�
θ̃
�
−min

�
∆∞c (θ∞, θ) ,∆∞c

�
θ∞, θ̃

��
.

Using this and the likelihood potential (Equation 20), we can then define the coheight as:

Proposition 1 For given θ̃ ∈ Θ\θ let:

Ch
�
θ̃, θ
�
=

m(θ,θ̃)−1�

m=0

∆mR
�
θ̃
�
+max

�
0,∆∞c (θ∞, θ)−∆∞c

�
θ∞, θ̃

��
, (26)

then the coheight of θ is Ch (θ) = maxθ̃∈Θ\θ Ch
�
θ̃, θ
�
.

We note that this is the same measure as found in Beggs (2005) and rediscovered in Cui and Zhai (2010).

We use this characterization to find the coheight in all of our applications, including two in which it is strictly

lower than the modified (or censored) coradius.

Notice that if ∆∞c (θ∞, θ) ≤ ∆∞c
�
θ∞, θ̃

�
and m

�
θ, θ̃
�

= ∞ then θ has no impact on the amount

of time it takes to transition to θ. This apparent puzzle can be explained using the critical droplet from

Physics and helps understand evolutionary time. Mathematically the critical droplet is the X
�
θ, θ̃
�
⊆ Z

"closest" to θ̃ such that from X
�
θ, θ̃
�

one is at least as likely to go to θ. If we have m
�
θ, θ̃
�
= ∞ and

15



∆∞c (θ∞, θ) ≤ ∆∞c
�
θ∞, θ̃

�
this means that once we get to the hub we are at least as likely to go to θ.

Thus in a horse race between θ and θ̃ it will take zero evolutionary time to go from the hub to θ. It may

take a great deal of calendar time and require many unlikely events, but once evolution reaches the hub one

is essentially there.

If one does not consider this reasoning, one arrives at a measure such as the censored coradius. The

censored coradius is proposed as a generalization of the modified coradius (Ellison, 2000). This is the most

common measure of waiting time used in economics. The censored coradius is:

CR (θ) = max
θ̃∈Θ\θ

∞�

m=0

∆mR
�
θ̃
�
+∆∞c (θ∞, θ) . (27)

If E1 = E∗ it is the modified coradius. Notice that the optimization is over the first and second highest total

radius. We refer to it as censored because once one gets to the core one stops. We have found the censored

coradius in all of our applications. Ellison (2000) has doubts about whether the modified coradius will be

simple to apply.

Because we have an exact measure of waiting time, all we need to show is that the censored coradius is

a bound for the coheight (log waiting time).

Lemma 6 For all θ ∈ Θ, CR (θ) ≥ Ch (θ) = ln τ (θ), a sufficient condition for them to be equal is if θ∗

determines the censored coradius, then θ∗ ⊆ θ∞ and m (θ, θ∗) =∞.

One use of the censored coradius is that a total radius that is higher than the censored coradius is still

sufficient for stochastic stability. To illustrate how one uses these techniques, we return again to the Nash

Demand game.

Example 5 Dynamics in the Nash Demand game: Because we solved the game using hub dominance

after one iteration, the waiting time to get to the stochastically stable state is simply the second highest

radius. Denote the Nash Bargaining solution as θ∗ = (γNBS, 1− γNBS), then:

Ch (θ∗) = CR (θ∗) = max [R (γNBS − δ, 1− γNBS + δ) ,R (γNBS + δ, 1− γNBS − δ)] . (28)

As δ → 0, Ch (θ∗)→ 1 or evolution will be very fast. However, at some point, R (θ∗) = 1 and all limit sets

will be stochastically stable. An analysis at the point right before this limit is interesting. From any limit

set, the most likely event is to move toward the hub. Furthermore, the likelihood of transitioning toward the

hub increases the further away one is from it. Cui and Zhai (2010) implies that the most likely medium-run

prediction is that one is in the hub near the stochastically stable state, and that the likelihood that one is in the

state γNBS+kδ or γNBS−kδ will be strictly decreasing in k. Thus, the θ series will appear very similar to a

price series. It will be similar to a random walk with a trend toward the long-run price ((γNBS, 1− γNBS)).

6 Examples of Emergent Seeds

The emergent seed will simplify our (re)analysis of several applications. Throughout the paper, we have

reanalyzed the Nash Demand game and now analyze four further problems: the Contract game (Young,

1998); the Gift Giving game (Johnson, Levine, and Pesendorfer, 2000); the Contribution game (Myatt

and Wallace, 2008b); and a novel application–the speed of evolution on Three Dimensional Lattices (an

extension of Ellison 1993 and 2000).
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6.1 The Contract Game

The Contract game is based on the bargaining problem discussed in Example 1, and we will use the same

evolutionary dynamics. The difference is that a contract is complete and lists the payoffs to all parties.

Thus, now Si = A1×A2 and if s1 = s2 then there is agreement; otherwise, both parties get zero. The set of

strict pure strategy equilibria (and limit sets) is any s1 = s2 = s as long as min [u1 (s11) , u2 (s22)] > 0 and

s11 + s22 ≤ 1. We write the limit set s as θ.

Notice that in the bargaining game a decent offer will be accepted by a large number of people, while in

the contract game only the right offer will be accepted. This causes a significant difference in dynamics–

instead of moving smoothly to the stochastically stable allocation evolution "bounces around" like a popcorn

popper. When disagreement is irrelevant, the stochastically stable allocation will not be in the hub and we

can illustrate the difference between the coheight and the coradius. We also derive a closed form objective

function.

Invaders will still offer a party more or less. If invaders offer s̃1, accepting s̃1 is the best response if:

(1− p1 (s̃1))u1 (θ1) = p1 (s̃1)u1 (s̃1) (29)

p1 (s̃1) = u1 (θ1) / (u1 (θ1) + u1 (s̃1))

thus, the best invaders offer s̃1 = 1 and:

R (θ) /n = min

�
u1 (θ1)

u1 (θ1) + u1 (1)
,

u2 (θ2)

u2 (θ2) + u2 (1)


. (30)

At this point, we must consider two separate cases. The simpler one is when either (0, 1) or (1, 0) are

not strict equilibria, and we address this second. We will now analyze the case in which disagreement is

irrelevant, or u1 (0) > 0 and u2 (0) > 0.

6.1.1 If Disagreement is Irrelevant

Young (1998) focuses on this case. When disagreement is irrelevant all contracts are strictly pure strategy

equilibria, specifically {(0, 1) , (1, 0)}, and these are the hub. The direct cost of going from the hub to θ is:

pi (θ) = ui (0) / (ui (0) + ui (θi)) , (31)

and the likelihood potential is:

lp (θ) /n = R (θ) /n−∆c (θ∞, θ) /n = min

�
u1 (θ1)

u1 (θ1) + u1 (1)
,

u2 (θ2)

u2 (θ2) + u2 (1)


(32)

−min

�
u1 (0)

u1 (0) + u1 (θ1)
−

u1 (0)

u1 (0) + u1 (1)
,

u2 (0)

u2 (0) + u2 (θ2)
−

u2 (0)

u2 (0) + u2 (1)


.

We cannot provide a full characterization for smooth utility functions because the objective function is

piecewise Leontief. We can see that it is Pareto efficient and independent of δ. This suggests it might

sometimes be far from the Kalai-Smordinsky solution6 , and with a closed form objective it is easy to show

this with a grid search. If:

6The Kalai-Smordinsky solution is a γKS such that u1 (γKS) /u1 (1) = u2 (1− γKS) /u2 (1).
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u1 (s) =

�
1−

1

2

�
s1 +

1

2
, u2 (s) =

�
1−

3

10

�
s2 +

3

10
(33)

the Kalai-Smorodinsky solution is γKS = 5
12 ∼ .42 but the stochastically stable limit set has θ∗1 ∼ .32.

We can provide two conditions under which it will, at least, be near the Kalai-Smorodinsky solution–in

the sense that it will be the allocation either just above or below the Kalai-Smorodinsky solution on the

grid. If utility is symmetric:

Lemma 7 If u1 (x) = u2 (x) and utility is differentiable, then the stochastically stable limit set is near the

Kalai-Smorodinsky solution.

Alternatively, if the value of agreement (ui (0) /ui (1)) is small. This argument uses the normalization:

ui (x) /ui (1) = (1− βi) vi (x) + βi (34)

where βi = ui (0) /ui (1) and vi (x) ∈ [0, 1].

Lemma 8 For all {v1 (·) , v2 (·)} if min [β1, β2]→ 0, then the stochastically stable limit set is near the Kalai-

Smorodinsky solution.

The Censored Coradius and the Coheight Because the stochastically stable limit set is usually not

in the hub, the coheight is strictly lower than the censored coradius. The censored coradius is:

CR (θ∗) = max
γ∈A1(δ)\θ∗1

R (γ, 1− γ) +∆c (θ∞, θ∗) . (35)

The coheight is lower because we have the choice between θ̃ and θ∗ going to the hub.

Ch (θ∗) = max
γ̃∈A1(δ)\θ∗1

[R (γ̃, 1− γ̃) +max [∆c (θ∞, θ∗)−∆c (θ∞, (γ̃, 1− γ̃)) , 0]] . (36)

Notice that in this model society will flip back and forth between extreme contracts. Occasionally more

reasonable contracts will be established and these will stay around longer. When society is not in the

stochastically stable contract it will not necessarily be near that contract. Stochastic stability is literally a

robust combination of staying their longer and getting to it more quickly.

6.1.2 If Disagreement is Relevant

The model is much simpler to solve if u1 (0) ≤ 0 or u2 (0) ≤ 0, assume that u1 (0) ≤ 0 < u2 (0). This

has no impact on the best invaders; however, when we transition to (0, 1), this is not a strict pure strategy

equilibrium. Thus, role one agents’ (weak) best response is to choose any strategy, and we can transition to

any θ. We transition to (0, 1) in one or two steps; thus, every limit set is in the hub. Stochastic stability

then means the maximal radius, or:

max
γ∈A1(δ)

min

�
u1 (γ)

u1 (1)
,
u2 (1− γ)

u2 (1)


, (37)

which is the Kalai-Smorodinsky objective function.
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6.2 The Gift Giving Game

The underlying characteristic of the contract game–an all or nothing contract–is shared by many other

games, for example repeated game equilibria are usually written as these types of contracts. Johnson, Levine,

and Pesendorfer (2001, JLP hereafter) look at a finite version of a repeated game, gift giving. The original

article uses the radius/coradius test but we show that with the emergent seed one can find more precise

results.

Agents live for two periods. In period t, they are young and in period t+1 they are old. When they are

young, they have a choice between giving a gift (1) or not (0). When they are old, they either receive or do

not receive a gift. Giving a gift costs 1 and receiving a gift gives a benefit of α, where α > 1. If there is

no link between giving a gift in period t and receiving one in t + 1, an agent will never give the gift. This

linkage is established using a social status, agents are either green (g) or red (r). The social status of old

agents will be determined by their action when they were young.

Thus, a strategy has two elements: an action conditional on social status a : {r, g} → {0, 1} and a

transition rule τ : {r, g} × {0, 1} → {r, g}. Although there are 64 strategies, many are equivalent. First,

either red or green could be good. We usually assume that green is good (a (g) ≥ a (r)). If a (g) = a (r), the

transition rule does not matter. If a (g) = a (r) = 0, these are the selfish strategies. if a (g) = a (r) = 1, these

are the generous strategies. A cooperative strategy (a (g) > a (r)) can only be an equilibrium if τ (g, 1) = g

and τ (g, 0) = r. There are only four cooperative strategies to consider:7

τ (g, 1) τ (g, 0) τ (r, 1) τ (r, 0) Name
g r r g team
g r g g weak team
g r r r insider
g r g r tit for tat

We need to allow for agents to use different strategies. Johnson, Levine, and Pesendorfer (2001) assumes

that each agent has a flag of social statuses: f ∈ {r, g}16–one for each transition rule. An agent using

strategy s then uses the appropriate social status.

We will insert noise into the flag process: with probability η > 0, a player’s f will be replaced with

another one at random. Let Φt be the distribution of flags in t, then in t agents know Φt−1. The noise

guarantees that for all f and Φt−1, Pr (Φt (f) |Φt−1) > 0. When there is noise, it should be clear that

tit-for-tat is not an equilibrium. The best response is a generous strategy, and a selfish strategy is the best

response to a generous one. The other cooperative strategies are equilibria for small η.

Evolutionary dynamics will be determined by BRM. The n young agents in period t will be uniformly

matched with the n old agents. In period t + 1 the old agents will be replaced by n new young agents

who will use the strategy of the agent they are replacing with probability ρ ∈ (0, 1). If they choose a new

strategy, it will be a best response to the current distribution of strategies and flags with probability 1−e−β.

Otherwise, it will be a strategy chosen at random.

In the Online Appendix (Section A), we provide a detailed analysis of the value functions. Here, we

provide an overview. Let v (s, p) be the value function of someone using strategy s when with probability p

someone is using strategy s′. If v (s, p|fs) for fs ∈ {r, g} is the value function conditional on the old person’s

7The strategy names are from a working paper version of Johnson, Levine, and Pesendorfer (2001).
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social status being fs, then obviously:

v (s, p) ≥ min{v (s, p|g) , v (s, p|r)} (38)

and the strategy is not in equilibrium if either v (s, p|g) or v (s, p|r) is too low relative to the invader. Thus,

we either need a (g) = 0 (v (s, p|g) is low) or a (r) = 1 (v (s, p|r) is low). Comparing v (s, p|g) when s is

cooperative (s ∈ {team, weak team, insider}) and s′ is selfish is enough to isolate the probability of going to

and from the selfish strategies. To get a (r) = 1, the invader must be a cooperative strategy for which red

is good. Remember that this cooperative strategy could be tit-for-tat, which is in the basin of attraction of

the selfish strategies. The analysis then shows:

Lemma 9 {selfish, team, weak team, insider} are all strict equilibria for small enough η. The radii are:

R (selfish) /n =
1

(1− η)α
, R (team) /n = min

�
1−

1

(1− η)α
,
1

2

�
1 +

1

(1− η)α

�
(39)

R (insider) /n = R (weak team) /n = min

�
1−

1

(1− η)α
,

1

(1− η)α


.

from the selfish one transitions to any cooperative ({team, weak team, insider}), and from a cooperative one

can always transition to a selfish one.

Because the selfish can always transition to any cooperative equilibrium and any cooperative can always

transition to the selfish (possibly via tit-for-tat), all limit sets are in the hub and we only need to find which

has the maximum radius.

Lemma 10 If (1− η)α < 2, then selfish strategies are stochastically stable; if (1− η)α = 2, then all

equilibrium strategies are; and if (1− η)α > 2, then team strategies are.

In the original article they could only find a sufficient condition for when the teams strategies would

be stochastically stable. Note that the dynamics in this model are quite simple, we move from the selfish

strategies to any cooperative strategy with the same cost, and stochastic stability is merely whichever

cooperative strategy stays around for the longest. It is also interesting that the most detailed contract–the

team strategies–are stochastically stable for high (1− η)α. Of the three cooperative strategies this is the

only one that rewards agents for not giving the gift to "bad" agents.

6.3 Contribution Game

In the contribution game, there are n = #(I) agents and a public good that requires l people to contribute,

where 1 < l ≤ n. Agents are willing to contribute if and only if necessary. Instead of specifying a model

of evolution, an agent can be described by two parameters, (bi, di) ∈ (0, 1)
2
. With probability bβi , an

agent will contribute when there is no benefit. With probability dβi , they will stop contributing when it

means the public good will not be provided. Without loss of generality, we will assume that bs > bs+1 for

s ∈ {1, 2, 3, ..., n− 1} and that (bi, di) are generic.8 Myatt and Wallace (2008b) provide a characterization

when ds < ds+1. Let a state, z, be the agents who are contributing. The strict equilibria (and limit sets)

8A property is generic if it is true for a dense open set. Here, we rule out ties between the (bi, di)
n
i=1.

20



are θ∅ = ∅–no one contributes, and Θ̂ where if θ ∈ Θ̂, then #(θ) = l; therefore, Θ =
�
θ∅, Θ̂

�
. If i ∈ θ ∈ Θ̂,

then r (θ, θ\i) = ln 1
di

and if i /∈ z ∈ Θ̂ or #(z) < l − 1 r (z, z ∪ i) = ln 1
bi

.

To exit θ∅, we need to get l−1 agents to contribute when there is no benefit, thusR (θ∅) = minz:̇#(z)=l−1

�

i∈z

ln 1
bi

=

l−1�

i=1

ln 1
bi

. If we let z+ = {1, 2, 3, ..., l − 1}, then we can go from θ∅ to any θ̂k where n ≥ k ≥ l and θ̂k = z+∪k.

For θ ∈ Θ̂, the radius is R (θ) = min
�
mini∈θ ln

1
di
,minj∈I\θ ln

1
bj

�
.

The problem is that there are many forms of indifference. For example, if you add j (θ) = min {j|j ∈ I\θ},

then you can drop anyone, easily creating a cycle. In cases like this, the best course is to find limit set(s)

that can be in any unconstrained least cost path–where every transition is determined by the radius. These

limit set(s) will be in the hub.

Lemma 11 From every θ ∈ Θ\θ̂l, there is an unconstrained least-cost path from θ to θ̂l.

Thus, θ̂l must be in the hub. Its radius isR
�
θ̂l
�
= min

�
ln 1

d+
, ln 1

dl
, ln 1

bl+1

�
, where ln 1

d+
= mini∈z+ ln 1

di
.

Using θ̂l and θ∅, we can now rule out any θ ∈ Θ\
�
θ̂k
�n

k=l
.

Lemma 12 For all θ ∈ Θ\
�
θ̂l, θ∅

�
ln 1

bl+1
> R (θ), and if θ �= θ̂k then R (θ∅) > R (θ). Thus, only

�
θ̂k

�n

k=l
or θ∅ can be stochastically stable.

The radii of the θ̂k for k > l are R
�
θ̂k
�

= min
�
ln 1

d+
, ln 1

dk
, ln 1

bl

�
. Stochastic stability is easy to

characterize when not contributing (θ∅) is in the hub. Similar to the article, we focus on when θ∅ is

stochastically stable. If θ∅ is in the hub, it requires:

R (θ∅) =
l−1�

i=1

ln
1

bi
≥ max

k≥l
R
�
θ̂k
�

. (40)

The more difficult problem is when it is not. It is not if and only if R
�
θ̂l

�
= ln 1

bl+1
and R

�
θ̂l+1

�
= ln 1

bl

and the hub is
�
θ̂l, θ̂l+1

�
. If θ∅ is not in the hub then we must find θ∅’s core attraction rate and compare

θ∅’s likelihood potential to that of θ̂l. This path can begin at θ̂l, the key question is how many intermediate

steps we might want. Notice that if i ∈ z+ ln 1
bi

< ln 1
bl+1

, since R
�
θ̂l
�
= ln 1

bl+1
we now that ln 1

bl+1
≤ ln 1

d+
.

Combining these facts tells us that for all i ∈ z+, ln 1
bi

< ln 1
di

. This implies there is no benefit to removing

someone from z+ because this will only increase the probability of adding someone else in the following step.

Thus there can be at most one step, and the core attraction rate is:

∆c
�
θ̂l, θ∅

�
= min

�
min

�
ln

1

d+
, ln

1

dl


,min
k>l

�
min

�
ln

1

d+
, ln

1

dk


−R

�
θ̂k
�
+ ln

1

bk

� 
− ln

1

bl+1
. (41)

The first term handles the direct jump and the second allows for an intermediate step. When θ∅ is not in

the hub, it is stochastically stable if and only if R (θ∅) ≥ ∆c
�
θ̂l, θ∅

�
. Interestingly enough one can show

that CR (θ∅) = ∆c
�
θ̂l, θ∅

�
. To reach the formula in the article, assume that ln 1

d+
> maxk≥l ln

1
dk

, in which

case the two cases merge. When θ∅ is not in the hub, the coheight of θ∅ is always maxk≥lR
�
θ̂k
�
, which is

easier to find and strictly lower than the censored coradius.

21



6.4 The Three-Dimensional Lattice with BRM.

Economists were not the first to turn to the lattice as a model of local interaction. Ising (1925) first analyzed

the one-dimensional lattice in physics to explain the fast and uneven manner in which ice forms. In a similar

vein, Ellison (1993) turned to the lattice when he wanted to show that evolution might be fast. Similar to

ice crystals, local interactions could lead to fast propagation of stochastically stable limit sets. Both studies

turned to more general models of local interaction after progress stalled. Ellison (2000) extended the analysis

in economics to two dimensions. Arous and Cerf (1996) extended it in physics to three dimensions–and

relied on a potential function. One needs to find a critical path–a path from the risk dominated equilibrium

to the risk dominant one. Section 5 shows how the emergent seed can be of assistance. Using this we will

be able to find the waiting time in the three dimensional lattice under BRM.

One population BRM is that agents choose a new strategy with probability 1 − ρ ∈ (0, 1) and choose

a best response to the current distribution with probability 1 − e−β. Otherwise, they choose a strategy at

random. In this analysis, the innovation is that agents only interact with their neighbors in a lattice. Thus,

the population of agents, I, has n3 members for n ≥ 6. Each i ∈ I will be endowed with a three- dimensional

location, (χ1 (i) , χ2 (i) , χ3 (i)), where for d ∈ {1, 2, 3} χd (i) ∈ {0, 1, 2, ..., n− 1}.9 Each agent will interact

only with their neighbors. We say that j is a neighbor of i (denoted j ∼ i) if there is a d ∈ {1, 2, 3} such

that (χd (i)± 1)mod (n− 1) = χd (j) and for d̃ ∈ {1, 2, 3} \d χd̃ (i) = χd̃ (j). In essence, we are taking a

cube of agents and wrapping it at the edges to avoid a boundary effect. Each period an agent plays a classic

coordination game with all of its neighbors:

A B
A 1− σ, 1− σ 0, 0
B 0, 0 σ, σ

. (42)

We now require that σ ∈
�
1
3 ,

1
2

�
. The upper bound makes (A,A) risk dominant, and the lower bound makes

the problem non-degenerate. Given our normalization, (A,A) is also Pareto efficient.

A state is a subset of agents: x ⊆ I, if i ∈ x, then i is using the strategy A. Let #(i, x) =

#({j ∈ x|j ∼ i}) ∈ {0, 1, 2, ..., 6}. If BR (i, x) is the best response of i given the state x, then σ ∈
�
1
3 ,

1
2

�

means:

BR (i, x) =

�
A if #(i, x) ≥ 3
B if #(i, x) ≤ 2

. (43)

In this problem, all of the limit sets will be strictly pure strategy Nash equilibria, and Peski (2010)

proved that the state in which everyone plays A (θA = I) is stochastically stable. Our key question is the

speed of evolution from θB = ∅–where everyone plays B. We will go up from θ if we transition to the set:

Θ+ (θ) =
�
θ̃ ∈ Θ|θ ⊂ θ̃

�
, and down if we go to the set Θ− (θ) =

�
θ̃ ∈ Θ|θ ⊃ θ̃

�
. In the emergent seed, this

will always occur.

Lemma 13 For θ ∈ Θ\ {θA, θB} R (θ) = min {c (Θ+ (θ) , θ) , c (Θ− (θ) , θ)}.

Our analysis shall rest on two particular types of boxes (or orthotopes). We will analyze one-, two-, and

three-dimensional boxes, and will require that there are at least two agents in each dimension. Thus, we

denote a box: box (d, l1, l2, l3) where d ∈ {1, 2, 3} is the dimension and ld̃ ≥ 2 (d̃ ∈ {1, ..., d}) are the lengths.

9There is a one-to-one mapping between locations and agents.
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If we do not mention a length, then it is two. Thus, box (3) is a set of eight agents arranged in a cube. The

limit sets where the least (excluding θB) and the most (excluding θA) agents play A can be characterized

with boxes as long as n > 4.

Lemma 14 If #(θ) = min {#(θ) |θ ∈ Θ\ {θA, θB}}, then θ is a box (3); likewise, if #(θ) = max {#(θ) |θ ∈ Θ\ {θA, θB}

then θ is I\box (3, n).

From now on, we will want to use box (3) and box (3, n) as the bases of our analysis. To make the cost

measurements precise, we make some simplifying restrictions on the limit sets we analyze.

Definition 5 We say that a limit set is:

1. small if θ ⊆ box (3, n− 2, n− 2, n− 2)

2. convex if for all i ∈ θ and j ∈ θ, either for all relevant λ ∈ (0, 1), λ (χ1 (i) , χ2 (i) , χ3 (i)) +

(1− λ) (χ1 (j) , χ2 (j) , χ3 (j)) is or is not in θ.10

3. orbicular if there is a sequence of boxes (xs)
S
s=1, where x1 ∈ box (3) and for s > 1 xs ∈ box (2) such

that θ = ∪S
s=1xs and for all Ŝ ≤ S, for i ∈ ∪Ŝ

s=1xs BR
�
i,∪Ŝ

s=1xs

�
= A.

These assumptions are without loss of generality because all relevant limit sets in the critical path must

satisfy them. Convexity rules out holes in limit sets, such as the "bagel," which is constructed by taking

eight box (3) and arranging them in a circle. This limit set is orbicular. Orbicular rules out the "pair of

dice." Take two box (3) that have only one agent in common. This limit set is convex but not orbicular.

Both imply that there are not separate areas of agents playing A, such as two box (3) that have no common

neighbors.

With these assumptions, we can be precise about the cost of going up and down. To go up, we have to

append a box (d) for d ∈ {1, 2, 3} such that all agents playing A in the new state are in a box (3). To be

precise, for θ ∈ Θ\θA, we need to append a box of dimension:

d (θ) = min {d|box (d) �⊆ θ, ∀i ∈ θ ∪ box (d) , BR (i, θ ∪ box (d)) = A} , (44)

which we refer to as the dimension of θ. Likewise, for θ ∈ Θ\θb going down, we need to remove:

l (θ) = min {#(θ ∩ box (3, n)) |θ ∩ box (3, n) �= ∅, ∀i /∈ θ\box (3, n) , BR (i, θ\box (3, n)) = B} , (45)

which we call the length of θ. Note that d (θ) = 3 only if θ = θB, otherwise d (θ) ∈ {1, 2}. Likewise, l (θ) ≥ 2.

It is fairly immediate that:

Lemma 15 Assume that θ is small, convex, and orbicular. Then, c (Θ+ (θ) , θ) = 2d(θ)−1 and c (Θ− (θ) , θ) =

⌊l (θ) /2⌋.

Our key result is then:

Proposition 2 In the emergent seed, θA and θB are in the two first iteration limit sets. Furthermore:

ln τ (θA) = R (θB) +∆R (θB) = 23−1 + 3 ∗ 2 = 10 .

10A λ is relevant if λ (χ1 (i) , χ2 (i) , χ3 (i)) + (1− λ) (χ1 (j) , χ2 (j) , χ3 (j)) is in the lattice.
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This result is because evolution will proceed through a sequence of three-dimensional boxes. One goes

up by adding a box (2) to a (largest) side. Once one has done this, the new limit set has a dimension of one,

and one can fill in that side. Going in the other direction, we remove a (smallest) edge from the box. The

tipping point is box (3, 4, 4, 4). Above this point, removing an edge is at least as costly as adding a box (2).

7 Limitations and Comparisons

The emergent seed is not always the best methodology. In a survey we found that it could have solved

at least 95%, but not all, of the applications in the literature. For example, Bergin and Bernhardt (2009)

show that the cooperative outcome is stochastically stable in arbitrary symmetric games with long-memory

imitation. Essentially, that paper uses the radius/coradius test and the emergent seed might be arbitrarily

complex.

An example in which only root switching seems to work is Ben-Shoham, Serrano, and Volij (2004). This

paper analyzes housing allocations and rank-based errors. Similar to proper equilibrium (Myerson, 1978), if

one mistake is worse than another, then it gets an order of magnitude lower probability. For example, if i

trades her second best house for her third best, it has a probability of e−β(3−2). If she trades for her fifth

best, it has a probability of e−β(5−2). It is also the first class of problems analyzed in economics in which

the emergent seed can have more than one iteration.11 The article establishes a reversible paths property.

The optimal path from θ to θ̃ is also the optimal path from θ̃ to θ, and the difference in the costs is the

difference in the levels of envy. Root switching then establishes that stochastic stability and minimal envy

are equivalent.

In terms of computational complexity, we have not improved on Edmonds’ algorithm, but we doubt this

is true for any paper in the field. Gabow, Galil, Spencer, and Tarjan (1986) find the optimal computational

method for a given root and use Edmonds’ algorithm. A trade off exists between the simplicity of each

iteration and the number of iterations. Our algorithm decreases the number but increases the complexity.

In contrast, it is undeniable that finding the emergent seed will take fewer iterations using our method than

that proposed in Cui and Zhai (2010). As we previously stated, the first iteration of both methods will

find the same set of cycles. In the next iteration, the Cui and Zhai (2010) algorithm often will have a first

iteration limit set pointing to something in its first iteration outer basin of attraction. This method finds the

first iteration radii and, thus, cannot be more efficient than ours. However, once the emergent seed is found,

a clear comparison cannot be made. Cui and Zhai (2010) continue connecting the hub to other limit sets,

and we recommend solving the shortest path problems. We are interested to see an application for which

the Cui and Zhai (2010) algorithm is superior. In terms of computational complexity, both Beggs (2005)

and Cui and Zhai (2010) ask one to repeatedly solve minimal cost tree problems. Finding a minimal cost

tree takes many computations and our method finds stochastic potentials without this.

Let us compare our algorithm to Cui and Zhai (2010). In the Nash Demand game, the first iteration of

both methods will find the hub. Our methodology stops but theirs continues. Note that all of the other limit

sets will continue to point at the limit set that they previously pointed at, and in each iteration the circuit

will (generically) pick up one of them until they are all in one grand cycle. Although each iteration is simple

11Assume that two agents have the same preferences and that in θ one has his or her favorite house and the other has his or
her second favorite. Then, there is a θ̃ in which the other has the favorite house. These allocations have a resistance of one and
will be part of a cycle. One can easily construct others, making the number of first iteration limit sets as large as desired.
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and one can use the characterization in Cui and Zhai (2010), this reaches the upper bound on the number of

iterations that their algorithm can require: #(Θ)− 1. In the Contract game, our method again stops at one

iteration and Cui and Zhai (2010) must continue. In the second iteration, their method will pick up either

the limit sets (x, 1− δ) or (1− δ, x), where x ∈ {0, δ}. If it picks up (x, 1− δ), then in the next iteration it

will pick up either (1− δ, x) or (y, 1− 2δ), where y ∈ {0, δ, 2δ}. We hope that the process is clear and note

that one will need at most 1/δ− 1 steps.12 Note that if disagreement is relevant, both methods require only

one iteration.

We feel that the contribution of Cui and Zhai (2010) is a characterization of stochastic stability based

on cycles. The paper never claims to reduce computational complexity. Likewise, in Beggs (2005), although

there is an algorithm, the goal is to increase our understanding of waiting time. Our goal is to explain and

use an underlying architecture in stochastic evolution.

Unfortunately, the algorithm in Beggs (2005) is so dissimilar to Edmonds’ algorithm that a direct com-

parison is difficult. To see that it is not the same algorithm, recognize that it proposes iteratively dropping

sets of state with a low height. In general, height is not trivial to compute, but for a limit set, it is the radius.

Thus, in the Contract game with irrelevant disagreement, one of the first limit sets dropped is an extreme

contract, which is in the first iteration limit set of Edmonds’ algorithm (our hub). We would be fascinated

to see an application of this methodology. Trygubenko and Wales (2006) present an algorithm that improves

on Bortz, Kalos, and Lebowitz (1975) because it does not require generating the iterated resistance. Because

the method in Bortz, Kalos, and Lebowitz (1975) is similar to ours, this might be better as well.

8 Conclusion

We hope that the emergent seed has helped the reader understand stochastic evolution. It is an intuitive

method, essentially iterating the concept of the limit set, and gives us both a characterization of stochastic

potential and waiting time. We also make a second claim since a vast majority of the applications implicitly

used this method. This methodology is self evident. We have been implicitly using it and this paper’s

contribution is to explain this.

Even if analysts decide not to use our methodology, we hope they have benefitted from this paper. This

paper is the first to lay out the general methodologies currently in use. These are deriving the limiting

distribution, root switching, and the radius/(modified) coradius test. All of these methodologies have cases

in which they are better than the emergent seed.

We hope that this paper has brought some clarity to the study of stochastic evolution. Although this is

a promising field, the methodology used and the rationale for results are often confusing and opaque. The

most popular current methodology is root switching. This will always be a guess-and-verify methodology

but the literature is a tribute to its success. The emergent seed is another methodology, one that pro-

vides a characterization and formulas for waiting time. However, its true value will be measured by future

applications.

12 In this problem, #(Θ) = 1

2δ

�
1

δ
− 1

�
.
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9 Appendix–Proof of the Theorem

Proof of Theorem 1. In a tree with root x we must have path from every z ∈ Z to x, thus we begin
by including a path from θ∞ to x. The emergent seed also gives an efficient structure to reach θ∞, an
admissible S∞ ⊆ E∞. Given that we are using this we should choose the path that achieves ∆∞c (θ∞, x),
which minimizes the increase in cost relative to S∞. Finally we notice that if y ∈ ∆mD̄ (x) then we will use

this path to reach x, and this means we can drop the transitions that give us
∞�

m=0
∆mR (x).

Is it possible to improve on this construction? By definition our S∞ maximizes the likelihood of all exiting
transitions, thus we should change it minimally. Since the stated deviations from this structure follow this
rule, we have found the stochastic potential of x.
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A Minor Proofs

Proof of Lemma 1. We first prove the equivalence of the two characterizations. If θ =
	

Q∈{Q(x,x)}



	

z∈Z

Q (z, ·)

�

then every y ∈ θ is an element of some Q ∈
�
Q (x, x)

�
, thus c (x, y) = 0. If for all y ∈ θ c (x, y) = 0 we

know there is a zero resistance path from x to y, since x was arbitrary there is also one from y to x, and

thus y is in some Q ∈
�
Q (x, x)

�
. Likewise if for all z ∈ Z\θ,

�
Q (x, z)

�
= ∅ this means c (x, z) > 0 and if

for all z ∈ Z\θ c (x, z) > 0 this means
�
Q (x, z)

�
= ∅. A transition from x to y will occur with a probability

on the order of exp [−βc (x, y)] thus if c (x, y) = 0 and we are currently in the state x the probability of

transitioning to y is increasing in β. Thus if x ∈ θ then we must have y ∈ θ, thus θ is minimal. Furthermore

if c (x, z) > 0 then this transition occurs with vanishing probability as β gets large. This establishes that for

fixed s Pr (zt+s �∈ θ|zt ∈ θ)→ 0 as β →∞.

Proof of Lemma 2. We need (u1 (θ1)− u1 (θ1 − δ)) /u1 (θ1) < (u2 (1− θ1)− u2 (1− θ1 − δ)) /u2 (1− θ1),

and the Condition 11 is a simple rearrangement of this condition.

Proof of Lemma 5. The key question is when is it better to take two steps of size δ instead of one

large one of size 2θ. Consider two steps going up, then this will be true if:

�
u2 (1− θ1)− u2 (1− θ1 − δ)

u2 (1− θ1)
−

u1 (θ1)− u1 (θ1 − δ)

u1 (θ1)


+

�
u2 (1− θ1 − δ)− u2 (1− θ1 − 2δ)

u2 (1− θ1 − δ)
−

u1 (θ1 + δ)− u1 (θ1)

u1 (θ1 + δ)



(46)

≤

�
u2 (1− θ1)− u2 (1− θ1 − 2δ)

u2 (1− θ1)
−

u1 (θ1)− u1 (θ1 − δ)

u1 (θ1)


.

Notice that if we take two short steps we subtract two radii, if we only take one long one then we only

subtract one. After some algebra this becomes the condition:

u2 (1− θ1 − δ)− u2 (1− θ1 − 2δ)

u2 (1− θ1 − δ)

u2 (1− θ1)− u2 (1− θ1 − δ)

u2 (1− θ1)
≤

u1 (θ1 + δ)− u1 (θ1)

u1 (θ1 + δ)
. (47)

Let θ = (θ1 + δ, 1− θ1 − δ) then this is equivalent to p+2 (θ) p+2 (θ1 − δ, 1− θ1 + δ) ≤ p+1 (θ). We note that

p+1 (θ) < p+2 (θ) but since as δ → 0 max
�
p+1 (θ) , p+2 (θ)

�
→ 0 this condition will be satisfied for small δ. The

condition in the lemma is a sufficient generalization.e critical one.

Proof of Lemma 6. One immediately notes that
∞�

m=0
∆mR

�
θm
�
θ̃
��

≥
m(θ,θ̃)−1�

m=0
∆mR

�
θ̃
�

and since

∆∞c
�
θ∞, θ̃

�
≥ 0 the inequality follows. If θ̃ is in the hub and m

�
θ, θ̃
�
= ∞, then

∞�

m=0
∆mR

�
θm
�
θ̃
��

=

m(θ,θ̃)−1�

m=0
∆mR

�
θ̃
�

and ∆∞c
�
θ∞, θ̃

�
= 0, proving the sufficient condition.
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Proof of Lemma ??. Note that both min
�
p−1 (θ) , p−2 (θ)

�
and min

�
p+1 (θ) , p+2 (θ)

�
are first increasing

and then decreasing, and that if θ is a limit set then for small enough δ min
�
p−1 (θ) , p−2 (θ)

�
> min

�
p+1 (θ) , p+2 (θ)

�
.

If min
�
p−1 (θ) , p−2 (θ)

�
> min

�
p+1 (θ) , p+2 (θ)

�
then we go from θ to (θ1 + δ, 1− θ1 − δ) if θ1 < γNBS and to

(θ1 − δ, 1− θ1 + δ) if θ1 > γNBS . This means that the limit set transitioned to has a higher radius.

Of course it is possible that for a given δ and θ that min
�
p−1 (θ) , p−2 (θ)

�
≤ min

�
p+1 (θ) , p+2 (θ)

�
. If the

state transitioned to is not a limit set then we can transition to any other limit set with positive probability.

If the state is then as mentioned above for small enough δ min
�
p−1 (θ) , p−2 (θ)

�
> min

�
p+1 (θ) , p+2 (θ)

�
. Thus

even if some limit sets go to an extreme solution either from that extreme we take small steps back towards

γNBS or we can go to the hub in one step.

Finally notice that min
�
p+1 (θ) , p+2 (θ)

�
≥ R (θ) /n by definition. Thus δ must be small enough to satisfy

two conditions. First we must have min
�
p−1 (θ) , p−2 (θ)

�
> min

�
p+1 (θ) , p+2 (θ)

�
for limit sets in the hub–or

γ < γNBS − δ < γNBS + δ < γ. Second if the extreme contracts (θ ∈ {(0, 1) , (1, 0)}) are strict equilibria

then we must also be certain that min
�
p−1

�
θ̂
�
, p−2

�
θ̂
��

> min
�
p+1

�
θ̂
�
, p+2

�
θ̂
��

.

Proof of Lemma 7. We point out that the likelihood potential is not a function of δ, thus we proceed

by analyzing allowing θ1 ∈ [0, 1]. Normalizing ui (1) = 1 the likelihood potential is:

lp (θ) /n ∈






u1(θ1)
u1(θ1)+1

− u2(0)
u2(0)+u2(1−θ1)

+ u2(0)
u2(0)+1

(1)
u1(θ1)

u1(θ1)+1
− u1(0)

u1(0)+u1(θ1)
+ u1(0)

u1(0)+1
(2)

u2(1−θ1)
u2(1−θ1)+1

− u2(0)
u2(0)+u2(1−θ1)

+ u2(0)
u2(0)+1

(3)
u2(1−θ1)

u2(1−θ1)+1
− u1(0)

u1(0)+u1(θ1)
+ u1(0)

u1(0)+1
(4)

. (48)

We then notice that if at θ either case (2) or (3) holds then θ can not be stochastically stable because the

function is respectively strictly increasing or strictly decreasing in θ. In cases (1) and (4) one can show the

objective function is strictly concave. Let us find the first derivatives of lp (θ) /n in these cases:

∂lp (θ) /n

∂θ1
∈

�
u′1 (θ1)

1
(u1(θ1)+1)

2 − u′2 (1− θ1)
u2(0)

(u2(0)+u2(1−θ1))
2 (1)

−u′2 (1− θ1)
1

(u2(1−θ1)+1)
2 + u′1 (θ1)

u1(0)

(u1(0)+u1(θ1))
2 (4)

(49)

Signing these in general is impossible because we have no restriction on u′1 (θ1) /u
′
2 (1− θ1), but if we apply

symmetry then at the Kalai-Smorodinsky solution (γKS = 1
2) we have:

∂lp (γKS) /n

∂θ1
∈






u′
�
1
2

��
1

(u( 12)+1)
2 −

u(0)

(u(0)+u( 12 ))
2

�
(1)

u′
�
1
2

��
− 1

(u( 12)+1)
2 + u(0)

(u(0)+u( 12))
2

�
(4)

Now since u (0) < u (x) < 1 1
(u(x)+1)2

> (0)

(u(0)+u(x))2
thus ∂lp(γKS)/n

∂θ1
> 0 for all θ1 ≤ γKS and ∂lp(γKS)/n

∂θ1
< 0

for all θ1 ≥ γKS, thus the stochastically stable limit set is one of the closest to γKS in A1 (δ).

Proof of Lemma 8. Using the normalization notice that

∆c (θ∞, θ) = min



β2

β2+1
1−[(1−β2)v2(1−θ1)+β2]
[(1−β2)v2(1−θ1)+β2]+β2

,
β1

β1+1
1−[(1−β1)v1(1−θ1)+β1]
[(1−β1)v1(1−θ1)+β1]+β1

�

(50)

and

R (θ) = min



(1−β1)v1(θ1)+β1
(1−β1)v1(θ1)+β1+1

,
(1−β2)v2(θ2)+β2
(1−β2)v2(θ2)+β2+1

�

. (51)
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This means that as min [β1, β2]→ 0 ∆c (θ∞, θ)→ 0 but R (θ)→ min
�

v1(θ1)
v1(θ1)+1

, v2(θ2)
v2(θ2)+1

�
> 0, thus for small

enough min [β1, β2] the solution will be near the Kalai-Smorodinsky solution, which maximizes the radius.

Proof of Lemma 9. First we establish that the only strict equilibria of the game with noise are

{selfish, team, weak team, insider}. If Pr (fs = r) > 0 then the strict best response to the tit-for-tat transi-

tion rule is the generous strategy (a (g) = a (r) = 1). And the unique best response to generous is selfish.

This is also the unique best response when τ (g, 1) = r or τ (g, 1) = τ (g, 0) because you either will always or

never be rewarded for giving the gift.

To establish that the other strategies are strict equilibria with small η we first have to consider the

relevant states. The states in this model are the social status a player will have with one transition rule

and the status they would have with a different one. Let fs be the element of f associated with strategy

s, and fs′ be the same for s′. Then define Pr (fs, fs′) as the probability fs ∈ {r, g} and fs′ ∈ {r
′, g′}. The

alternative strategy will always be a strict equilibrium, so when we write (s, s′) both strategies are the team,

weak team, or insider strategy and s �= s′. When the alternative strategy is selfish we will write "selfish."

The payoffs are:

v (s′, s′) = Pr (g, g′)
��

1−
η

2

�
α− 1

�
+Pr (r, g′)

��
1−

η

2

�
α− 1

�
(52)

+Pr (g, r′)Pr (1|s′, r′, 0)α+Pr (r, r′) Pr (1|s′, r′, 0)α

v (s, s′) = Pr (g, g′)
��

1−
η

2

�
α− 1

�
+Pr (r, g′)

η

2
α (53)

+Pr (g, r′) (Pr (1|s′, r′, 1)α− 1) + Pr (r, r′)Pr (1|s′, r′, 0)α

v (selfish, s′) = Pr (g, g′)
η

2
α+Pr (r, g′)

η

2
α (54)

+Pr (g, r′)Pr (1|s′, r′, 0)α+Pr (r, r′) Pr (1|s′, r′, 0)α

Where Pr (1|s′, fs′ , a) ∈
�
η
2 , 1−

η
2

�
is the probability of receiving the gift given the strategy s′, the color

of the flag, fs′ ∈ {r′, g′}, and the action of the agent a ∈ {0, 1}. Clearly v (selfish, s′) < v (s′, s′) if
�
1− η

2

�
α−1 > η

2α, or η is small enough. For v (s, s′) < v (s′, s′) we must have Pr (r, g′) > Pr (g, r′), and the

ratio is large enough. Since everyone is following the strategy s′ this means that Pr (r, g′) is on the order of

1− η and Pr (g, r′) is on the order of η, thus as long as η is small enough we are fine.

Now we turn to the task of finding the optimal invaders, sI and let s′ = sI . Let p be the probability of

the invader in this strategy, and let v (s, p) be the expected utility of using strategy s. First we notice that

if Pr (fs) is the probability that given s fs ∈ {r, g} occurs it is obvious that:

v (s, p) = Pr (g) v (s, p|g) + Pr (r) v (s, p|r) ≥ min [v (s, p|g) , v (s, p|r)] . (55)

And if the right hand side is low enough (compared to another strategy) then one of the actions for the

strategy s is no longer optimal. Thus we should minimize either v (s, sI |g) or v (s, sI |r), and we need either

a (g) = 0, or a (r) = 1 to be optimal.

If we need a (g) = 0 to be optimal then the new strategy will be selfish. Thus the critical probability is:

v (s, p|g) = −1 + (1− p)
�
1−

η

2

�
α ≤ (1− p)

η

2
α = v (selfish, p|g) . (56)

p = 1− 1/α (1− η) .
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Now assume that we need a (r) = 1 to be optimal, or we minimize v (s, p|r). The selfish strategies do not

give an incentive for a (r) > 0, thus we need either −team, −weak team, −insider, or −tit for tat. Where

−s is the strategy that treats red as good–the language has changed. Next notice that if (r, g′) occurs then

both strategies will call for the same action and this can not affect the choice of strategy. Thus what we care

about is v (s, p|r, r′).

v (s, p|r, r′) = (1− p)Pr (1|s, r, 0)α+ pPr (1|s′, r′, 0)α (57)

v (s′, p|r, r′) = −1 + (1− p)Pr (1|s, r, 1)α+ pPr (1|s′, r′, 1)α

Thus we are looking for the critical s′ such that for the minimal p:

v (s, p|r, r′) ≤ v (s′, p|r, r′) (58)

(1− p)Pr (1|s, r, 0)α+ pPr (1|s′, r′, 0)α ≤ −1 + (1− p)Pr (1|s, r, 1)α+ pPr (1|s′, r′, 1)α

1 + (1− p)α (Pr (1|s, r, 0)− Pr (1|s, r, 1)) ≤ pα (Pr (1|s′, r′, 1)− Pr (1|s′, r′, 0))

and we see the choice of s′ does not matter, for all of them Pr (1|s′, r′, 1)− Pr (1|s′, r′, 0) = 1− η. For both

the insider and the weak team strategy Pr (1|s, r, 0) − Pr (1|s, r, 1) = 0. Thus for these two equilibria the

critical p is:

p = 1/α (1− η) . (59)

For the team strategy Pr (1|s, r, 0)− Pr (1|s, r, 1) = 1− η so:

p = 1/2 + 1/ [2α (1− η)] . (60)

Now we turn to the selfish limit sets. Like before it doesn’t matter if the alternative social status is red.

All of our equilibrium strategies are selfish in this state. But then we notice that all of the other equilibrium

strategies react in the same way when the social status is green. Thus:

v (selfish, p|g′) = pα
η

2
≤ −1 + p

�
1−

η

2

�
α = v (s′, p|g′) (61)

p = 1/α (1− η) .

We have derived the radii of all the limit sets.

Proof of Lemma 10. Notice that if the optimal transition is to −s then it can, without loss of generality,

be −tit for tat, which is in the basin of attraction of the selfish strategies. Thus we can transition to the

selfish strategies in any transition. From the selfish strategy we can transition to any cooperative strategy

with equal likelihood, thus all limit sets are in the hub and the stochastically stable limit set is the one with

maximal radius, and the result follows from simple analysis of the radii.

Proof of Lemma 13. If this is not true then R (θ) = c
�
θ, θ̃
�

for θ̃ ∈ Θ\ (Θ+ (θ) ∪Θ− (θ) ∪ θ). Let

x+ = θ̃\θ, x− = θ\θ̃. Now for all i ∈ I, #(i, θ ∪ x+) ≥ #
�
i, θ̃
�

and likewise #(i, θ\x−) ≤ #
�
i, θ̃
�
, but

this means θ ∪ x+ is contained in a limit set in Θ+ (θ) and respectively for θ\x− in Θ− (θ). One must have

a weakly lower cost and the claim is established.

Proof of Lemma 14. First consider a box (3), for i ∈ box (3) # (i, box (3)) ≥ 3 and since every j /∈ box (3)

has at most one neighbor in a box (3), #(j, box (3)) ≤ 2 thus this is a strict Nash equilibrium and a limit

4



set. Clearly to satisfy the first characteristic the box can not be any smaller. On the other hand consider

an θ which is I\box (3, n). We notice for any j /∈ I\box (3, n) can only have three neighbors in a box (3), and

by induction this implies that j must be in a box (3, n) of agents all playing B. Since all i ∈ I\box (3, n)

can have at most one neighbor in a box (3, n) we can be sure that #(i, I\box (3, n)) ≥ 3. Finally we have to

check other geometric objects. The only restriction we have placed is that there must be at least two agents

in every direction, thus we have to check planes. A two dimensional plane has four neighbors for every agent

in it, but everyone not in the plane has at most one neighbor in the plane, thus in both cases a plane would

work. However if n2 > 8 there will be more agents in the plane, and n2 > 4n there will be fewer agents not

in the plane. This clearly requires n > 4, which we have already assumed.

Proof of Lemma 15. By construction if we append the correct box (d (θ)) then the best response of

everyone in that box will be A. Since θ is orbicular none of the agents in box (d (θ)) are already playing A,

and since θ is small all of the agents playing B need at least d (θ) of their neighbors to switch before they

will change their best response. This implies that they all have 3− d (θ) neighbors playing A, thus if half of

them error the other half will switch by best response, deriving our first formula. Likewise for small θ the

set of agents we need to remove will be in a line, and since θ is convex there is no shorter segment we can

remove to reach a smaller limit set. If we have every other agent in that line error to B then the rest will

switch by best response, thus we derive our second formula.

Now for θA we actually have to change the strategy of a box (3, n), for any pair of adjacent lines this will

require n errors, and for the four lines that make up a box (3, n) it will require 2n.

Proof of Proposition 2. By comparing c (Θ+ (θ) , θ) and c (Θ− (θ) , θ) we realize that we can go up

from a given limit set any time if d (θ) = 1 and if d (θ) = 2 any time l (θ) ≥ 4. We may go down from a

limit set any time l (θ) ≤ 3. Now assume that d (θ) = 2 and l (θ) ≥ 4. We will go up from this limit set by

appending a box (2), since the length of this box is two the result will be a limit set θ̃ with d
�
θ̃
�
= 1, and

we may continue to go up. Thus from any box (3, 4, 4, 4) the first iteration of the emergent seed will connect

us to θA at zero first iteration resistance. Now consider a θ ∈ box (3, 4, 4, 3), when we go to θ̃ ⊂ θ we will

not increase the length, thus in the first iteration of the emergent seed we can go from this limit set to θB.

Now for θ which is a box (3), c (Θ− (θ) , θ) = 1 < 2 = c (Θ+ (θ) , θ) thus θB is in a first iteration limit set.

Likewise for θ which is I\box (3, n) c (Θ+ (θ) , θ) = 1 < n = c (Θ− (θ) , θ) thus θA is in a first iteration limit

set. Since there are only two first iteration limit sets our analysis of the emergent seed is done.

Finally we establish the log-waiting time. Notice that since θA is in the hub for any θ̃, the censored

coradius conditional on starting at θ̃–CR
�
θ̃, θA

�
–is:

CR
�
θ̃, θA

�
=





R
�
θ̃
�
+∆R

�
θ1
�
θ̃
��

if θ̃ ∈ ∆D
�
θ1 (θB)

�

R
�
θ̃
�

else
. (62)

We then notice that for θ ∈ Θ\θA R
�
θ̃
�
≤ c

�
Θ+

�
θ̃
�
, θ̃
�

< R (θB). Thus the censored coradius is

CR (θA) = R (θB) + ∆R
�
θ1 (θB)

�
= Ch (θB, θA) = Ch (θA). The second equality is due to the fact that

lp+ (θA|θB) = lp (θA) and lp+ (θB |θA) = lp (θB), the third because for any θ̃ and θ: Ch
�
θ̃, θ
�
≤ CR

�
θ̃, θ
�
.

Thus we need to find the censored coradius of θB. First we must exit θB, this costs R (θB) = 23−1. Next

we have to calculate the first iteration cost of getting to a box (3, 4, 4, 4). Notice that each step in this path

has the cost of max (c (Θ+ (θ) , θ)− c (Θ− (θ) , θ) , 0). Since c (Θ+ (θ) , θ) ∈ {1, 2} the only relevant cases are
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when c (Θ+ (θ) , θ) = 2 or d (θ) = 2, when this is true c (Θ− (θ) , θ) = 1 and the iteration cost is one. One

can easily see that there are six such steps, thus the total cost of these steps is six, and the total cost is ten.

Lemma 16 of Lemma 11. In a least cost path, every transition must attain the radius. We note that if the

path contains θ∅, then the next transition can be to θ̂l. Thus, if mini∈θ ln
1
di

< minj∈I\θ̂l ln
1
bj

at any point in

a path, then we can go to θ̂l with one more transition. Thus, assume that we do not do this. Then, at every

step, we must add j∗ (θ) = min {j|j ∈ I\θ}. To make the path non-cyclic, we should remove ı̂ (θ) = maxi∈θ i.

If we do not transition to θ∅ at some point in this path, then we must arrive at θ̂l in a finite number of steps.

of Lemma 12. For all θ ∈ Θ\
�
θ̂l, θ∅

�
, ln 1

bl+1
> R (θ) is immediate because we must add j∗ (θ) =

minj∈I\θ j, thus ln 1
bl+1

> minj∈I\θ ln
1
bj
≥ R (θ). The latter statement is because for such a θ, R (θ) ≤

minj∈I\θ ln
1
bj

= minj∈z+\θ ln
1
bj

<
�

j∈z+

ln 1
bi

= R (θ∅).

The conclusion is reached by considering the two cases. First, if R
�
θ̂l
�
= ln 1

bl+1
, then θ̂l has strictly

higher radius than any θ ∈ Θ\θ∅, and none of them can be stochastically stable by hub dominance. Second,

if R
�
θ̂l
�
< ln 1

bl+1
, then we can transition from θ̂l to θ∅. θ∅ is in the hub and only a θ̂k can be stochastically

stable by hub dominance.
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