1.	(19 points) Honor Statement: Please read and sign the following statement:
	I promise that my answers to this test are based on my own work with- out reference to any notes, books, or the assistance of any other person during the test. I will also not use a calculator or other electronic aid for calculation during this test.
	Name and Surname: Student ID: Signature:
2.	(22 points total) About the Slutsky equation.
	(a) (8 points) Write down the Slutsky equation in elasticity form, defining each term.
	(b) (4 points) What are Giffen Goods? Using the Slutsky equation explain how they can exist. Are there any real world examples of Giffen Goods?

- (c) (3 points) One method they might want to use is to subsidize everyone's income. Explain how this might reduce the consumption of the good in question.
- (d) (3 points) A second method would be to give them a small amount of the good for free. Explain how this might reduce the consumption of the good in question.

3.	(13	points total) About strict monotonicity or more is better
	(a)	(3 points) Define this assumption using words or symbols.
	(b)	(4 points) Give an example that makes it obvious that this is a very bad assumption about human preferences.
	(c)	$(2\ points)$ If it is such a bad assumption about human preferences, why do we make this assumption?
	(d)	(4 points) Show what it rules out in indifference curves. Explain why.

- 4. (34 points total) Consider the utility function: $u(F,C) = -8\frac{1}{F^2} \frac{1}{C^2}$. **NOTE:** There is significant partial credit to be gained for someone who can not answer all of the question.
 - (a) (5 points) Establish this utility function is strictly monotone for F > 0 and C > 0, what does this tell us about someone maximizing this over a budget set: $p_f F + p_c C \leq I$.

- (b) (2 points) Establish this utility function is convex for F > 0 and C > 0.
- (c) (2 points) For utility maximization it is equivalent to $u(F,C)=\frac{1}{8\frac{1}{F^2}+\frac{1}{C^2}}$ for $F>0,\,C>0.$
 - Now you will solve the problem of maximizing $u\left(F,C\right)=-8\frac{1}{F^2}-\frac{1}{C^2}$ over the budget set $p_fF+p_cC\leq I$ where $p_f>0,\,p_c>0$ and I>0.
- (d) (2 points) Set up the objective function.
- (e) (4 points) Find the first order conditions.

(f)	(4 points) Solve for the Bang for the Buck's and then find a function	ion
	for C in terms of prices and F .	

(g) (3 points) Find the demand curve for F.

(i) (6 points) Now find the demand curve for C using two different methods and that the results are the same either way.

1.	(19 points) Honor Statement: Please read and sign the following statement:
	I promise that my answers to this test are based on my own work without reference to any notes, books, or the assistance of any other person during the test. I will also not use a calculator or other electronic aid for calculation during this test.
	Name and Surname: Student ID: Signature:
2.	(22 points total) About the Slutsky equation.
	(a) (8 points) Write down the Slutsky equation in elasticity form, defining each term.
	(b) (4 points) What are Giffen Goods? Using the Slutsky equation explain how they can exist. Are there any real world examples of Giffen Goods?

- (c) (3 points) One method they might want to use is to subsidize everyone's income. Explain how this might reduce the consumption of the good in question.
- (d) (3 points) A second method would be to give them a small amount of the good for free. Explain how this might reduce the consumption of the good in question.

3.	(13	points total) About strict monotonicity or more is better
	(a)	(3 points) Define this assumption using words or symbols.
	(b)	(4 points) Give an example that makes it obvious that this is a very bad assumption about human preferences.
	(c)	(2 points) If it is such a bad assumption about human preferences, why do we make this assumption?
	(d)	(4 points) Show what it rules out in indifference curves. Explain why.

- 4. (34 points total) Consider the utility function: $u(F,C) = -9\frac{1}{F} \frac{1}{C}$. **NOTE:** There is significant partial credit to be gained for someone who can not answer all of the question.
 - (a) (5 points) Establish this utility function is strictly monotone for F > 0 and C > 0, what does this tell us about someone maximizing this over a budget set: $p_f F + p_c C \leq I$.

- (b) (2 points) Establish this utility function is convex for F > 0 and C > 0.
- (c) (2 points) For utility maximization it is equivalent to $u(F,C)=\frac{1}{9\frac{1}{F}+\frac{1}{C}}$ for $F>0,\ C>0.$
 - Now you will solve the problem of maximizing $u\left(F,C\right)=-9\frac{1}{F}-\frac{1}{C}$ over the budget set $p_{f}F+p_{c}C\leq I$ where $p_{f}>0,\,p_{c}>0$ and I>0.
- (d) (2 points) Set up the objective function.
- (e) (4 points) Find the first order conditions.

(f)	(4 points) Solve for the Bang for the Buck's and then find a function	tion
	for C in terms of prices and F .	

(g)
$$(3 \text{ points})$$
 Find the demand curve for F .

(i) (6 points) Now find the demand curve for C using two different methods and that the results are the same either way.

1.	(19 points) Honor Statement: Please read and sign the following statement:
	I promise that my answers to this test are based on my own work without reference to any notes, books, or the assistance of any other person during the test. I will also not use a calculator or other electronic aid for calculation during this test.
	Name and Surname: Student ID: Signature:
2.	(22 points total) About the Slutsky equation.
	(a) (8 points) Write down the Slutsky equation in elasticity form, defining each term.
	(b) (4 points) What are Giffen Goods? Using the Slutsky equation explain how they can exist. Are there any real world examples of Giffen Goods?

- (c) (3 points) One method they might want to use is to subsidize everyone's income. Explain how this might reduce the consumption of the good in question.
- (d) (3 points) A second method would be to give them a small amount of the good for free. Explain how this might reduce the consumption of the good in question.

3.	(13)	points total) About strict monotonicity or more is better
	(a)	(3 points) Define this assumption using words or symbols.
	(b)	(4 points) Give an example that makes it obvious that this is a very bad assumption about human preferences.
	(c)	(2 points) If it is such a bad assumption about human preferences, why do we make this assumption?
	(d)	(4 points) Show what it rules out in indifference curves. Explain why.

- 4. (34 points total) Consider the utility function: $u(F,C) = -\frac{1}{F^2} 8\frac{1}{C^2}$. **NOTE:** There is significant partial credit to be gained for someone who can not answer all of the question.
 - (a) (5 points) Establish this utility function is strictly monotone for F > 0 and C > 0, what does this tell us about someone maximizing this over a budget set: $p_f F + p_c C \leq I$.

- (b) (2 points) Establish this utility function is convex for F > 0 and C > 0.
- (c) (2 points) For utility maximization it is equivalent to $u(F,C)=\frac{1}{\frac{1}{F^2}+8\frac{1}{C^2}}$ for $F>0,\,C>0.$

Now you will solve the problem of maximizing $u\left(F,C\right)=-\frac{1}{F^2}-8\frac{1}{C^2}$ over the budget set $p_fF+p_cC\leq I$ where $p_f>0,\,p_c>0$ and I>0.

- (d) (2 points) Set up the objective function.
- (e) (4 points) Find the first order conditions.

(f)	(4 points) Solve for the Bang for the Buck's and then find a function	ion
	for C in terms of prices and F .	

(g) (3 points) Find the demand curve for F.

(i) (6 points) Now find the demand curve for C using two different methods and that the results are the same either way.

1.	(19 points) Honor Statement: Please read and sign the following statement:
	I promise that my answers to this test are based on my own work without reference to any notes, books, or the assistance of any other person during the test. I will also not use a calculator or other electronic aid for calculation during this test.
	Name and Surname: Student ID: Signature:
2.	(22 points total) About the Slutsky equation.
	(a) (8 points) Write down the Slutsky equation in elasticity form, defining each term.
	(b) (4 points) What are Giffen Goods? Using the Slutsky equation explain how they can exist. Are there any real world examples of Giffen Goods?

- (c) (3 points) One method they might want to use is to subsidize everyone's income. Explain how this might reduce the consumption of the good in question.
- (d) (3 points) A second method would be to give them a small amount of the good for free. Explain how this might reduce the consumption of the good in question.

3. (13 p	points total) About strict monotonicity or more is better
(a)	(3 points) Define this assumption using words or symbols.
	(4 points) Give an example that makes it obvious that this is a very bad assumption about human preferences.
	(2 points) If it is such a bad assumption about human preferences, why do we make this assumption?
(d)	(4 points) Show what it rules out in indifference curves. Explain why.

- 4. (34 points total) Consider the utility function: $u(F,C) = -\frac{1}{F} 16\frac{1}{C}$. **NOTE:** There is significant partial credit to be gained for someone who can not answer all of the question.
 - (a) (5 points) Establish this utility function is strictly monotone for F > 0 and C > 0, what does this tell us about someone maximizing this over a budget set: $p_f F + p_c C \leq I$.

- (b) (2 points) Establish this utility function is convex for F > 0 and C > 0.
- (c) (2 points) For utility maximization it is equivalent to $u(F,C)=\frac{1}{\frac{1}{F}+16\frac{1}{C}}$ for $F>0,\ C>0.$
 - Now you will solve the problem of maximizing $u\left(F,C\right)=-\frac{1}{F}-16\frac{1}{C}$ over the budget set $p_fF+p_cC\leq I$ where $p_f>0,\,p_c>0$ and I>0.
- (d) (2 points) Set up the objective function.
- (e) (4 points) Find the first order conditions.

(f)	(4 points) Solve for the Bang for the Buck's and then find a function	tion
	for C in terms of prices and F .	

(g)
$$(3 \text{ points})$$
 Find the demand curve for F .

(i) (6 points) Now find the demand curve for C using two different methods and that the results are the same either way.