A Handout on
 The Differentiated Bertrand and
 Cournot Models

Dr. Kevin Hasker

1 The Cournot Model:

In this model firms choose output, and price is determined to clear market. For comparison with the Bertrand Model below we will assume $Q=a-b P$, or $P=\frac{a}{b}-\frac{Q}{b}$. We will work with the standard costs of $c(q)=c q$.

$$
\begin{aligned}
& \max _{q_{2}}\left(\frac{a}{b}-\frac{q_{1}+q_{2}}{b}\right) q_{2}-c q_{2} \\
&-\frac{1}{b} q_{2}+\left(\frac{a}{b}-\frac{q_{1}+q_{2}}{b}\right)-c=0 \\
& \frac{a}{b}-c-\frac{1}{b} q_{1}-\frac{2}{b} q_{2}=0 \\
& \frac{1}{2}(a-b c)-\frac{1}{2} q_{1}=q_{2}
\end{aligned}
$$

Notice that if $q_{1}=0$ this firm will sell the monopoly output at the monopoly price: $P_{m}=\frac{a}{b}-\frac{\frac{1}{2}(a-b c)}{b}=\frac{1}{2} \frac{a}{b}+\frac{1}{2} c$. In the Cournot Equilibrium they will produce $q_{1}=q_{2}=q$

$$
\begin{gathered}
\begin{aligned}
\frac{1}{2}(a-b c)-\frac{1}{2} q & =q \\
\frac{1}{3}(a-b c) & =q_{c}
\end{aligned} \\
P_{c}=\frac{a}{b}-\frac{2\left(\frac{1}{3}(a-b c)\right)}{b} \\
P_{c}=\frac{1}{3} \frac{a}{b}+\frac{2}{3} c
\end{gathered} \pi_{c}=\left(P_{c}-c\right) q_{c}=\left(\frac{1}{3} \frac{a}{b}+\frac{2}{3} c-c\right) \frac{1}{3}(a-b c)=\frac{1}{9 b}(a-b c)^{2} .
$$

1.1 The Stackleberg Model

Now we have firm 2 choose their output after firm 1 does. By the normal arguments we still have:

$$
\frac{1}{2}(a-b c)-\frac{1}{2} q_{1}=q_{2}
$$

but now firm 1 takes this into consideration when choosing their output

$$
\begin{aligned}
& \max _{q_{1}}\left(\frac{a}{b}-\right.\left.\frac{q_{1}+q_{2}\left(q_{1}\right)}{b}\right) q_{1}-c q_{1} \\
& \max _{q_{1}}\left(\frac{a}{b}-\right.\left.\frac{q_{1}+\frac{1}{2}(a-b c)-\frac{1}{2} q_{1}}{b}\right) q_{1}-c q_{1} \\
& \max _{q_{1}} \frac{1}{2 b} q_{1}\left(a-b c-q_{1}\right) \\
& a-b c-2 q_{1}=0 \\
& q_{1}^{s}=\frac{1}{2}(a-b c) \\
& q_{2}^{s}=\frac{1}{2}(a-b c)-\frac{1}{2} q_{1} \\
&=\frac{1}{2}(a-b c)-\frac{1}{2}\left(\frac{1}{2}(a-b c)\right) \\
&=\frac{1}{4}(a-b c) \\
&=\frac{a}{b}-\frac{\frac{1}{4}(a-b c)+\frac{1}{2}(a-b c)}{b} \\
&=\frac{1}{4} \frac{a}{b}+\frac{3}{4} c \\
& P_{s}^{s}=\left(\frac{1}{4} \frac{a}{b}+\right.\left.\frac{3}{4} c-c\right) \frac{1}{2}(a-b c)=\frac{1}{8 b}(a-b c)^{2} \\
& \pi_{1}^{s}=\left(\frac{1}{4} \frac{a}{b}+\frac{3}{4} c-c\right) \frac{1}{4}(a-b c)=\frac{1}{16 b}(a-b c)^{2}
\end{aligned}
$$

Notice that

$$
\begin{aligned}
\pi_{1}^{s} & >\pi_{c}>\pi_{2}^{s} \\
\frac{1}{8 b}(a-b c)^{2} & >\frac{1}{9 b}(a-b c)^{2}>\frac{1}{16 b}(a-b c)^{2}
\end{aligned}
$$

this is because q_{1} and q_{2} are strategic substitutes, or that $\frac{\partial q_{1}\left(q_{2}\right)}{\partial q_{2}}<0$.

2 Differentiated Bertrand

Now firms choose price, and quantity is:

$$
\begin{gathered}
q_{1}=a-b p_{1}+p_{2} \\
q_{2}=a-b p_{2}+p_{1} \\
\max _{p_{2}}\left(p_{2}-c\right)\left(a-b p_{2}+p_{1}\right)
\end{gathered}
$$

$$
\begin{aligned}
\left(p_{2}-c\right)(-b)+\left(a-b p_{2}+p_{1}\right) & =0 \\
a+b c+p_{1}-2 b p_{2} & =0 \\
\frac{1}{2} c+\frac{1}{2} \frac{a}{b}+\frac{1}{2 b} p_{1} & =p_{2}
\end{aligned}
$$

Notice that if $p_{1}=0$ that this is the monopoly price in the Cournot model, but that in general p_{2} will be higher than the monopoly price. The equilibrium is where $p=p_{1}=p_{2}$.

$$
\begin{aligned}
\frac{1}{2} c+\frac{1}{2} \frac{a}{b}+\frac{1}{2 b} p & =p \\
p_{b} & =\frac{1}{2 b-1}(a+b c) \\
q_{b} & =a-b\left(\frac{1}{2 b-1}(a+b c)\right)+\left(\frac{1}{2 b-1}(a+b c)\right) \\
& =\frac{b}{2 b-1}(a+c-b c) \\
\pi_{b} & =\left(\frac{1}{2 b-1}(a+b c)-c\right) \frac{b}{2 b-1}(a+c-b c) \\
& =\frac{b}{(2 b-1)^{2}}(a+c-b c)^{2}
\end{aligned}
$$

2.1 A "Stackleberg" Variation on the Bertrand model.

Now we will, like before, have firm 2 choose their price after firm 1.

$$
\begin{aligned}
& \max _{p_{1}}\left(p_{1}-c\right)\left(a-b p_{1}+p_{2}\left(p_{1}\right)\right) \\
& \max _{p_{1}}\left(p_{1}-c\right)\left(a-b p_{1}+\frac{1}{2} c+\frac{1}{2} \frac{a}{b}+\frac{1}{2 b} p_{1}\right) \\
&\left(p_{1}-c\right)(-b)+\left(p_{1}-c\right)\left(\frac{1}{2 b}\right)+\left(a-b p_{1}+\frac{1}{2} c+\frac{1}{2} \frac{a}{b}+\frac{1}{2 b} p_{1}\right)=0 \\
& a+\frac{1}{2} c+b c+\frac{1}{2} \frac{a}{b}-\frac{1}{2 b} c-2 b p_{1}+\frac{1}{b} p_{1}=0 \\
& \frac{1}{4 b^{2}-2}\left(a-c+2 b^{2} c+2 a b+b c\right)=p_{1}^{s} \\
& \frac{1}{2} c+\frac{1}{2} \frac{a}{b}+\frac{1}{2 b}\left(\frac{1}{4 b^{2}-2}\left(a-c+2 b^{2} c+2 a b+b c\right)\right)=p_{2}^{s} \\
& \frac{1}{8 b^{3}-4 b}\left(4 a b^{2}-c-a+2 b^{2} c+4 b^{3} c+2 a b-b c\right)=p_{2}^{s}
\end{aligned}
$$

$$
\begin{aligned}
q_{1}^{s} & =a-b \frac{1}{4 b^{2}-2}\left(a-c+2 b^{2} c+2 a b+b c\right)+\frac{1}{8 b^{3}-4 b}\left(4 a b^{2}-c-a+2 b^{2} c+4 b^{3} c+2 a b-b c\right) \\
& =\frac{(2 b+1)}{4 b}(a+c-b c) \\
q_{2}^{s} & =a-b \frac{1}{8 b^{3}-4 b}\left(4 a b^{2}-c-a+2 b^{2} c+4 b^{3} c+2 a b-b c\right)+\left(\frac{1}{4 b^{2}-2}\left(a-c+2 b^{2} c+2 a b+b c\right)\right) \\
& =\frac{\left(4 b^{2}+2 b-1\right)}{4\left(2 b^{2}-1\right)}(a+c-b c)
\end{aligned}
$$

Notice that firm 1 is charging the higher price:

$$
\begin{aligned}
p_{1}^{s} & >p_{2}^{s} \\
\frac{a+c-b c}{\left(2 b^{2}-1\right) 4 b} & >0
\end{aligned}
$$

and selling the lower quantity. However if you calculate their profit:

$$
\begin{aligned}
\pi_{1}^{s b} & =\left(\frac{1}{4 b^{2}-2}\left(a-c+2 b^{2} c+2 a b+b c\right)-c\right) \frac{(2 b+1)}{4 b}(a+c-b c) \\
& =\frac{1}{8 b} \frac{(2 b+1)^{2}}{\left(2 b^{2}-1\right)}(a+c-b c)^{2} \\
\pi_{2}^{s b} & =\frac{1}{16 b} \frac{\left(4 b^{2}+2 b-1\right)^{2}}{\left(2 b^{2}-1\right)^{2}}(a+c-b c)^{2}
\end{aligned}
$$

we see that:

$$
\begin{aligned}
\pi_{2}^{s b} & >\pi_{1}^{s b}>\pi_{b} \\
\frac{1}{16 b} \frac{\left(4 b^{2}+2 b-1\right)^{2}}{\left(2 b^{2}-1\right)^{2}}(a+c-b c)^{2} & >\frac{1}{8 b} \frac{(2 b+1)^{2}}{\left(2 b^{2}-1\right)}(a+c-b c)^{2}>\frac{b}{(2 b-1)^{2}}(a+c-b c)^{2} \\
\frac{1}{16 b} \frac{\left(4 b^{2}+2 b-1\right)^{2}}{\left(2 b^{2}-1\right)^{2}} & >\frac{1}{8 b} \frac{(2 b+1)^{2}}{\left(2 b^{2}-1\right)}>\frac{b}{(2 b-1)^{2}} \\
\pi_{2}^{s b} & >\pi_{1}^{s b} \\
\frac{1}{16 b} \frac{\left(4 b^{2}+2 b-1\right)^{2}}{\left(2 b^{2}-1\right)^{2}} & >\frac{1}{8 b} \frac{(2 b+1)^{2}}{\left(2 b^{2}-1\right)} \\
\frac{1}{16 b} \frac{\left(4 b^{2}+2 b-1\right)^{2}}{\left(2 b^{2}-1\right)^{2}} 16 b\left(2 b^{2}-1\right)^{2} & >\frac{1}{8 b} \frac{(2 b+1)^{2}}{\left(2 b^{2}-1\right)} 16 b\left(2 b^{2}-1\right)^{2} \\
\left(4 b^{2}+2 b-1\right)^{2} & >2(2 b+1)^{2}\left(2 b^{2}-1\right) \\
4 b & >-3
\end{aligned}
$$

$$
\begin{aligned}
\pi_{1}^{s b} & >\pi_{b} \\
\frac{1}{8 b} \frac{(2 b+1)^{2}}{\left(2 b^{2}-1\right)} & >\frac{b}{(2 b-1)^{2}} \\
\frac{1}{8 b} \frac{(2 b+1)^{2}}{\left(2 b^{2}-1\right)} 8 b(2 b-1)^{2}\left(2 b^{2}-1\right) & >\frac{b}{(2 b-1)^{2}} 8 b(2 b-1)^{2}\left(2 b^{2}-1\right) \\
\left(4 b^{2}-1\right)^{2} & >8 b^{2}\left(2 b^{2}-1\right) \\
16 b^{4}-8 b^{2}+1 & >16 b^{4}-8 b^{2} \\
1 & >0
\end{aligned}
$$

So again, all of the statements I made in class are generally true. The fundamental reason for this is because p_{1} and p_{2} are strategic compliments or $\frac{\partial p_{1}\left(p_{2}\right)}{\partial p_{2}}>0$ in the best response.

To get a solvable problem it is actually easiest to set $b=1$. Then we get:

$$
\begin{array}{cc}
p_{b}=a+c ; q_{b}=a ; \pi_{b}=a^{2} \\
p_{1}^{s}=\frac{3}{2} a+c & p_{2}^{s}=\frac{5}{4} a+c \\
q_{1}^{s}=\frac{3}{4} a & q_{2}^{s}=\frac{5}{4} a \\
\pi_{1}^{s b}=\frac{9}{8} a^{2}=1.125 a^{2} & \pi_{2}^{s b}=\frac{25}{16} a^{2}=1.5625 a^{2}
\end{array}
$$

which makes it easy for you to verify what took several pages of math above.

