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1 A reality check

In mathematics, a corner solution is when one or more variables in an opti-
mization is constrained at either the maximum or minimum value it can take.
We are most interested in demand being non-negative, i.e. you can not buy
a negative amount of a good. If a consumer would "want" to buy a negative
amount, we constrain their demand at zero–in other words they simply do not
consume any of that good.

In reality I am pretty sure that the most obvious fact about consumers is
that they don’t buy all goods. If you asked the manager of a large grocery
store she or he could probably tell you how many people—of what type—buy a
certain good. It would be obvious to him or her that not every customer buys
every good. Forget "brand loyalty" their are some people who don’t use certain
cleaning supplies, etcetera. Do you buy mouthwash? Many don’t. What is your
order at your favorite coffee shop? I bet you have one coffee that you always
order (maybe two or three). This doesn’t mean you despise the rest of the menu,
its just this is your favorite. Even more, do you have a bucket list? That is, by
definition, a list of things you would like to do but either don’t have the time
or money to do. If you consume everything, how can you have a bucket list?
Personally one thing I am vaguely interested in but would never do is rent a
race car to drive around a racetrack in. I have heard this costs about 8K USD
for five minutes, and there’s no way that is worth it.

It isn’t a discreteness problem. You could, for example, rent any fancy sports
car you want to for a day... might be worth it for you but not for me. It isn’t
an effect of me not wanting some goods. If someone gave me a present of either
a sports car for a day or driving a race car I would be very excited. Besides
myself with joy. It is just that the amount of utility I would gain per Lira (or
Dollar) spent is just not high enough. To use the lingo, the bang for the buck
is too low.

So why don’t we analyze this when we do Utility maximization? The answer
is simply complexity. If we consider corner solutions then we have to go through
a case based analysis–what if x = 0, what if y = 0, what if x = 0 and y = 0–
and that is hard, so we focus on the simplest case, where the solution is interior
or x > 0 and y > 0. If the solution is interior then we know for a fact that
the first order conditions must be satisfied, and if the objective function has
convex indifference curves we can be sure that the second order conditions will
be satisfied. It is nothing more than that, corner solutions are hard.

So it is important to know that corner solutions exist, it is also important
to know how to find them, but in the end we won’t be making you solve any
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problems with corner solutions, except for quasi-linear or linear utility (perfect
substitutes). Linear utility is a hard case to analyze simply because for most
prices the solution is always a corner solution.

2 Complimentary Slackness–the formal math-

ematical technique.

For constrained maximization the methodology we should be using is the Kuhn-
Tucker methodology. Why don’t we teach this technique? We do in the Math
for ECON class, but the general answer is because for the utility functions
we analyze (CES and Quasi-linear) most of the time Lagrange is enough. To
be precise as long as our preferences satisfy local non-satiation we are fine,
local non-satiation is automatically satisfied if our preferences are monotonic or
strongly monotonic (the weak and strong version of "more is better").

Except... of course... if we end up at a corner solution. Ergh, then we need
the full strength of Kuhn-Tucker, namely complimentary slackness.

Definition 1 Complimentary slackness: at a maximum of the function L (x, y, ...)
we must have:

∂L

∂x
≤ 0, x ≥ 0,

∂L

∂x
x = 0

This of course allows for the possibility that x = 0 and ∂L
∂x
< 0, alternatively

the restriction on x could be slack and then x > 0 and ∂L
∂x

= 0. So one of
the two inequalities can be "slack" or not satisfied with equality: there are
complimentary inequality conditions.

Let me show a few examples.

Example 2 Maximizing consumer surplus.
This is the standard method underlying the classic Q = a− bP that we love

so much. I am certain you have never seen it generated this way before, but
you will need to understand this for ECON 204 and beyond. We can think of a
consumer as maximizing:

CS (Q) = B (Q)− PQ

or consumer surplus.1 The first derivative of this function is:

dCS

dQ
=
dB

dQ
− P =MB − P ,

and the second derivative is d2CS
dQ2 = d2B

dQ2 and we simply assume that B (Q) is

concave so we don’t need to worry about that (we assume d2B
dQ2 < 0). So the

solution satisfies the first derivative is equal to zero, right? Wrong, as I am

1Notice that in order to do this properly they must have quasi-linear utility (see below)
and a sufficiently large income.

2



sure you know if the price is too high this customer won’t buy anything. Let me
assume that B (Q) =

�
a
b
− 1

2bQ
�
Q or MB = a

b
− 1

b
Q which would give us our

standard linear demand curve. In the graph below I set a = 20, b = 2.
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at a nice normal price like 4, we trace a line over to the demand curve (Q =
a− bP) and find that the quantity they want to buy is 12. On the other hand
at some crazy price like 12 when we trace a horizontal line it never touches the
demand curve, which means the demand is zero.

Now let’s look at the full complimentary slackness conditions when MB =
a
b
− 1

b
Q they are:

dCS

dQ
=

a

b
−
1

b
Q− P ≤ 0

Q ≥ 0

dCS

dQ
Q = 0

we can clearly see that the highest dCS
dQ

can be is a
b
− P , so if P > a

b
then

dCS
dQ

< 0. That is fine, because then complimentary slackness tells us that we
must have Q = 0, which is the conclusion we expect.

Example 3 Quasi-linear utility: u (x, y) = x1−σ

1−σ + y for σ > 0 and σ �= 1. In
this case we need to set up a proper objective function, if you don’t mind I would
like to set the price of y (py) to one. Then this objective function is:

Lql (x, y, λ) =
x1−σ

1− σ
+ y − λ (pxx+ y − I)
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and the first derivatives are:

∂Lql

∂x
=

1

xσ
− λpx

∂Lql

∂y
= 1− λ

∂Lql

∂λ
= − (pxx+ y − I)

now this utility function is strictly monotonic, so in any maximum we must
have

∂Lql
∂λ

= 0. Further we notice that for small enough x 1
xσ

can be arbitrarily

large, so we must have x > 0 and
∂Lql
∂x

= 0. Of course we can not be sure that
∂Lql
∂y

= 0, we might have λ > 1. From the first order condition
∂Lql
∂x

= 0 we

know that λ = 1
pxxσ

, and if λ > 1 then we must have this being strictly greater

than one when x = I
px

or we must have:

1

px

�
I
px

�σ > 1

1

p1−σx Iσ
> 1

this boils down to "income being pretty low." The impact of the price of x on
this condition depends on σ. If σ > 1 then a high px makes this condition harder
to satisfy, if σ < 1 a higher px makes this condition easier to satisfy.
An Easier Way:
No no, I wouldn’t dream of leaving it there. There is a much simpler way

to proceed in this case. Assume the solution is interior, or to be specific that
y∗ > 0. See? I told you we were analyzing corner solutions and then I tell you
to assume them away. Do you see why we don’t spend too much time on them?
So if we assume that we have an interior solution then λ = 1 and:

∂Lql

∂x
=

1

xσ
− px = 0

x =

�
1

px

� 1

σ

= x (px)

therefore:

px

�
1

px

� 1

σ

+ y = I

y = I − p
1

σ
(σ−1)

x = y (px, I)

Now, when will we have a corner solution? When y (px, I) ≤ 0 or...

I − p
1

σ
(σ−1)

x ≤ 0

which is the same condition as above, after a little bit of manipulation. However
this was a much easier way to proceed.
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Example 4 Linear utility, u (x, y) = αx+ βy

Lqllin (x, y, λ) = αx+ βy − λ (pxx+ pyy − I)

= (α− λpx)x+ (β − λpy) y + λI

proceeding formally we look at the first derivatives:

∂Llin

∂x
= α− λpx

∂Llin

∂y
= β − λpy

∂Llin

∂λ
= − (pxx+ pyy − I)

like before this utility function is strictly monotonic so we know ∂Llin
∂λ

= 0, but
what do we do about the other two conditions? These are, in short, a function
of λ so if we choose λ high enough both will be negative, and if we choose λ too
low then both will be positive. So how do we choose λ?

Well we need to go back to the complimentary slackness conditions. It says
that if x > 0 we must have ∂Llin

∂x
= 0 and if x = 0 we must have ∂Llin

∂x
≤ 0.

The reasoning for this is transparent enough, if ∂Llin
∂x

> 0 that immediately tells
you that you should increase x, so you better not have this if you are trying to
claim this is a maximizing strategy. This tells us we have to choose λ such that
∂Llin
∂x

≤ 0 and ∂Llin
∂y

≤ 0. But how about choosing it so high that ∂Llin
∂x

< 0

and ∂Llin
∂y

< 0? No, that won’t work because then x = y = 0 and that can’t

be utility maximizing (this function is strictly monotonic). So we have to have

max
�
∂Llin
∂x

, ∂Llin
∂y

�
= 0. Good. But does that help? In the graph below I graph

∂Llin
∂x

and ∂Llin
∂y

as a function of λ, when α = 2, px = 1 and β = 3, py = 2.
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In this graph the thick line is ∂Llin
∂x

and the thin one is ∂Llin
∂y

. Notice that while
∂Llin
∂y

starts out higher by the time it comes to choosing the critical λ (when
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∂Llin
∂x

≤ 0 and ∂Llin
∂y

≤ 0) it is lower, and that the right choice for λ is 2, when
∂Llin
∂x

= 0 > ∂Llin
∂y

. This immediately tells us that y = 0 and thus x = I
px

.
But surely their must be a way to proceed that is a little easier, no? Yes

there is look at the expressions:

∂Llin

∂x

1

px
=

α

px
− λ

∂Llin

∂y

1

py
=

β

py
− λ

obviously if ∂Llin
∂x

≤ 0 then ∂Llin
∂x

1
px
≤ 0 and vice-versa. However now we can

easily figure out the optimal λ to set one of them equal to zero, and λ = α
px

will
work when

∂Llin

∂y

1

py
=
β

py
−
α

px
< 0

or
β

py
<
α

px

And that, you probably recall, is the Bang for the Buck condition–the marginal
utility per unit of money.

BfBx =
MUx

px
.

So, if BfBx =
α
px

> β
py

= BfBy then x = I
px

and y = 0. The reverse

is obviously true if β
py
> α

px
. and in the knife edge case where β

py
= α

px
the

consumer doesn’t care what they buy as long as they spend all their income.

3 An intuitive approach using Bang for the Bucks

A more intuitive approach is to use the Bang for the Buck from the start (BfB).
The bang for the buck of good x is:

BfBx =
MUx

px
.

It is the amount of happiness you get per lira (or whatever your favorite unit
of money is). The power of this technique is that it is ordinal2 and it doesn’t

2To see this notice that ũ (x, y) = f (u (x, y)) then ∂ũ
∂x

= ∂f
∂u

∂u
∂x

and ∂ũ
∂y

= ∂f
∂u

∂u
∂y

, so if

�BfBx =
∂ũ

∂x

1

px
≥
∂ũ

∂y

1

py
= �BfBy

then this means:
∂f

∂u

∂u

∂x

1

px
≥
∂f

∂u

∂u

∂y

1

py

and since ∂f
∂u

> 0 this equivalent to

BfBx =
∂u

∂x

1

px
≥
∂u

∂y

1

py
= BfBy .
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depend on any other goods, it is a stand alone concept. It can also be used as
a guide for maximization:

Proposition 5 If preferences are convex and BfBx > BfBy then you should
increase x and decrease y.

As someone who spends way too much time characterizing equilibrium, you
probably don’t see the point. I mean, who cares about what to do when you
are outside of the optimum. I apologize for training you so badly. You have
spent so much time trying to learn how to find optima that you never thought
about the basic insight underpinning this optimum. This will now come back
to haunt you.

Why? Because of the obvious corollary:

Corollary 6 If when y = 0 there is an x∗ > 0 and z∗ > 0 such that

BfBy < BfBx = BfBz

then the optimal consumption of y is zero.

I only mentioned a third good there so that you don’t get hung up thinking
this only holds for two goods. It holds for any number of goods, if goods are
consumed in a strictly positive amount, then their bang for the bucks must be
the same. If their consumption is zero, they have a lower bang for the buck. Of
course I have already been using this technique. It is possible to analyze these
problems without using it but it is awfully hard. For example when I re-scaled
the first derivatives of the linear utility function:

∂Llin

∂x

1

px
=

α

px
− λ = BfBx − λ

∂Llin

∂y

1

py
=

β

py
− λ = BfBy − λ

and when BfBx =
α
px
> β

py
= BfBy we conclude y∗ = 0–you don’t consume

any y. The same conclusion as above, but relying directly on the bang for the
bucks without going through all that mathematical setup. I can also do the
same thing for the quasi-linear case:

∂Lql

∂x

1

px
=

1

pxxσ
− λ

∂Lql

∂y

1

py
= 1− λ ,

(remember that I set py = 1). And like argued above, if 1
px(x∗)

σ > 1 then y∗ = 0.

Of course in this case we have x∗ = I
px
, but that is not important. Let me do

one final example, simply to show you how it would go if we had more than two
goods. Its a pain in the neck, but I really just want to show you the method,
and most importantly show you an example where two goods are consumed in
a strictly positive amount.
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Example 7 A three good quasi-linear utility function:

u (x, y,m) = xαyβ +m

in this case we assume α > 0, β > 0 and α+ β < 1. This makes the function
strictly concave. We will need our objective function and derivatives later, so
the objective function is:

L3g (x, y,m, λ) = x
αyβ +m− λ (pxx+ pyy + pmm− I)

and the derivatives are:

∂L3g

∂x
= α

xαyβ

x
− λpx

∂L3g

∂y
= β

xαyβ

y
− λpy

∂L3g

∂m
= 1− λpm

∂L3g

∂λ
= − (pxx+ pyy + pmm− I)

However instead of working with these for now, lets look at the bang for the
bucks:

BfBx = α
xαyβ

pxx
=
α

px

yβ

x1−α

BfBy = β
xαyβ

pyy
=
β

py

xα

y1−β

BfBm =
1

pm
.

Let’s just be lazy and let pm = 1 like before. From the second formulation of the
bang for the bucks you can see that if either x→ 0 or y → 0 then BfBx →∞

or BfBy →∞, thus we know that x∗ > 0 and y∗ > 0 or:

α
xαyβ

pxx
= β

xαyβ

pyy

αpyy = βpxx

x = y
α

β

py

px

Now things get a little complicated, if m∗ > 0 then we know that λ = 1 and:

∂L3g

∂y
= β

xαyβ

y
− py = 0 .

8



Using what we just found out about the optimal ratio of x and y this means:

β

�
yα
β

py
px

�α
yβ

y
− py = 0

β

�
α

β

py

px

�α
= pyy

1−α−β

β1
�
β−α

�
αα (py)

α
p−αx (py)

−1 = y1−α−β

β1
�
β−α

�
αα (py)

α
p−αx (py)

−1
= y1−α−β

ααβ1−α

pαxp
1−α
y

= y1−α−β

y =

�
ααβ1−α

pαxp
1−α
y

� 1

1−α−β

x =

�
ααβ1−α

pαxp
1−α
y

� 1

1−α−β α

β

py

px

x1−α−β =
ααβ1−α

pαxp
1−α
y

α1−α−β

β1−α−β
(py)

1−α−β

(px)
1−α−β

x =

�
α1−βββ

p
β
yp
1−β
x

� 1

1−α−β

and then from the budget constraint we know that:

pxx+ pyy +m = I

px

�
α1−βββ

p
β
yp
1−β
x

� 1

1−α−β

+ py

�
ααβ1−α

pαxp
1−α
y

� 1

1−α−β

+m = I

m = I − px

�
α1−βββ

p
β
yp
1−β
x

� 1

1−α−β

− py

�
ααβ1−α

pαxp
1−α
y

� 1

1−α−β

.

On the other hand, if we don’t consume the warm glow of money the problem is
much simpler. Like before we have x = yα

β

py
px

and now budget balancing is:

pxx+ pyy + 0 = I

px

�
y
α

β

py

px

�
+ pyy + 0 = I

pyy
α+ β

β
= I

y =
β

α+ β

I

py

and of course x = α
α+β

I
px

. I.e. standard Cobb-Douglas demand curves.
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