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Abstract

This paper critiques the use of continuous models when this usage
results in the best response not being well defined. It shows how in the
Bertrand and Hotelling model the simpler discrete model results in clearer
best responses and transparent results.

Interesting enough these results also strengthen our understanding.
While it is not a novel insight, in the Bertrand game with asymmetric
marginal costs we have equilibria that do not require changing the sharing
rule. In the Hotelling model it shows that the equilibrium(ia) are actually
the unique strategies to survive iterated deletion of dominated strategies.

1 Introduction

It is an interesting question whether the world is actually finite or continuous. I
understand physicists are currently investigating the possibility that both might
be true, but for most of us the choice is really a matter of convenience. After
all–as Gödel (1931) showed–mathematics cannot even be internally perfect,
it is simply a useful descriptive tool. This is well understood in Economics.
For example in competitive analysis we assume the continuum for convenience.
I have never been to a market that would sell me π apples, and a price of π
would be–if not illegal–problematic. However even though our model might
predict this result, we are not concerned. The model is not reality; it is a tool
for understanding.

In Game Theory the preference should be the reverse. As Nash (1950)
elegantly explained, if there are a finite number of options then best responses
are well defined and all one needs to do is intersect them to find the equilibria.
Of course in many game theory models (for example Cournot, 1838) the best
response is always well defined, but if it does cause a problem we suggest the
analyst should prefer a large finite number of strategies.

The two examples in this paper where the best response fails to exist (the
Bertrand and Hotelling models) share the characteristic that one wants to be
"close to" but not "the same" as the others. This causes an open set problem
and the non-existence of best responses. In both cases equilibria do exist, but
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they magically pop into existence at the only place best responses are defined.
Despite this fact the textbook model in both cases is the continuum.

Interestingly enough, we also derive stronger and clearer results. In the
Bertrand game if we assume all variables are in (very small) units we can eas-
ily prove Bertrand’s famous undercutting insight. Furthermore when the firm’s
marginal costs are not the same we can derive the set of equilibria without arti-
ficially altering the sharing rule or relying on elegantly complex mixed strategies
(Blume, 2003). In the Hotelling location model, if there are a finite number of
locations (each of which is populated) we can show that the equilibria are the
unique strategy(ies) to survive iterated deletion of dominated strategies.

2 The Bertrand Game

This model was developed as a critique of the Cournot model, in his famous
1888 review Bertrand said:

Indeed, whatever the common price adopted, if one of the own-
ers, alone, reduces his price, he will, ignoring any minor exceptions,
attract all the buyers, and thus double his revenue if his rival lets
him do so. (de Bornier, 1992)1

Later on this insight was formally developed into what is now called the
Bertrand game.

2.1 Model

There are two firms with constant marginal costs choosing price to maximize
their profits. Denote the marginal costs of firm i as ci ≥ 0. We restrict this
analysis by assuming that price must be in units–κ–and for simplicity that
all other variables are as well. The market demand curve is D (p) which is
downward sloping (D′ < 0), based on this and the prices of the two firms
(p1, p2) firm one’s demand curve is:

d1 (p1, p2) =






0 if p1 > p2
1

2
D (p1) if p1 = p2
D (p1) if p1 < p2

.

thus firm one maximizes π1 (p1, p2) = (p1 − c1) d1 (p1, p2).

1 We must take issue with this argument.
Imagine that two hot dog sellers were side by side. One of them was charging 4.99 and

the other 5.00. Would you categorically and always go to the cheaper firm? I doubt most
would, and he explicitly states almost all the customers will switch. This might happen if the
cheaper firm offered a 33% discount.
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2.2 The Best Response

In this section we will always analyze things from firm 1’s point of view without
loss of generality. The monopoly price will be denoted pm1 :

pm1 ≡ argmax
p
(p− c1)D (p)

and please note that this will be in κ units. If the other firm (for any reason)
prices strictly higher than this they have chosen not to compete and firm one
should simply ignore them, thus if p2 > pm1 then the best response is pm1 .

With that out of the way we can immediately derive Bertrand’s core insight,
undercutting.

Lemma 1 (Undercutting) If pm1 ≥ p2 ≥ c1 + 2κ then p1 = p2 − κ is the best
response.
Proof. We first notice that π1 (p1, p2) is strictly positive and increasing in
p1 over this range. Thus we know charging a strictly higher price cannot be
optimal. Likewise p2 −mκ will give a lower profit than p2 − κ for any m > 1.
Thus the only candidates for best responses are p1 = p2 and p1 = p2 − κ. The
corresponding profits are:

π1 (p2, p2) = (p2 − c1)
1

2
D (p2)

π1 (p2 − κ, p2) = (p2 − κ− c1)D (p2 − κ)

we hypothesize that π1 (p2 − κ, p2) > π1 (p2, p2), and notice that D (p2 − κ) >
D (p2) because demand is strictly downward sloping. Since p2−c1 > p2−κ−c1 >
κ > 0 our hypothesis will be verified if:

(p2 − κ− c1) ≥ (p2 − c1)
1

2

2 (p2 − κ− c1) ≥ (p2 − c1)

p2 ≥ −c1 + 2κ+ 2c1

p2 ≥ c1 + 2κ.

or the range above.

At this point it is worthwhile dropping into a case by case basis. If p2 = c1+κ
then firm one will get a strictly positive profit by charging p1 = p2, while
anything strictly lower or higher will result in at best a zero profit. If p2 = c1
then firm one clearly does not want to charge a lower price, on the other hand
if they match the price they get zero profit. But, one might notice, this would
also be true if they charged a strictly higher price, so BR1 (c1) = c1 +mκ for
m ∈ N ≡ (0, 1, 2, ...).

If the other firm is pricing below our marginal cost, p2 < c1 then firm 1 wants
to price higher than them. That will guarantee zero profits while matching or
charging a lower price will give negative profits. Thus if p2 < c1 BR1 (p2) =
p2 + (m+ 1)κ. Thus we conclude:
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Proposition 2 If all variables are in κ units then the best response of firm one
is:

BR1 (p2) =






pm1 if p2 > pm1
p2 − κ if pm1 ≥ p2 ≥ c1 + 2κ
p2 if p2 = c1 + κ

p2 +mκ if p2 = c1
p2 + (m+ 1)κ if p2 < c1

for m ∈ N.

Some readers might take issue with pricing below your marginal cost, after
all what if the other firm makes a mistake? For these readers I point out that
a best response is about the possible optimal strategies. You might, for various
reasons, prefer one or the other of these in practice.

2.2.1 Equilibria

There are two cases to consider, first of all the simple and direct one where
c1 = c2 = c or the two firms are symmetric. In this case the pure strategy
equilibria are p1 = p2 ∈ {c, c+ κ}. If p1 = c+ κ then as we have explained the
best response of firm 2 is p2 = p1, thus this is a Nash equilibrium. If p1 = c then
above we argued that firm 2 could charge p2 = p1, but they could also charge any
strictly higher price. If p∗2 ≥ c+2κ it will unleash a cycle of price undercutting,
namely p1 = p∗2−κ and then p2 = p∗2−2κ, and so on until max (p1, p2) < c+2κ.
In this equilibrium p2 = c to stop such cycles from occurring.2

While it is outside the scope of this paper, one might wonder about mixed
strategy equilibria. Interestingly enough their do not seem to be any, as is
proven in the appendix. This is surprising because in general there is an odd
number of Nash equilibria, but this is a generic property (Govindan and Wilson,
2001).

The second case is worthy of a lemma, even if the result is fairly straightfor-
ward.

Lemma 3 If c1 < c2 then in equilibrium p2 = p1 + κ for c1 ≤ p1 ≤ c2.
Proof. If c1 ≤ p1 < c2 then firm 2 wants to charge a strictly higher price,
and the least higher price they can charge is p2 = p1 + κ. If they choose p2 >
p1 + κ then firm 1 will want to increase their price, which cannot be true in an
equilibrium. If p1 = c2 then firm 2 would be willing to match the price, but
then firm 1 would want to strictly decrease their price. Thus if p1 = c2 p2 must
be c2 + κ to be sure that firm 1 does not want to raise or lower their price. If
p1 = c2 + κ then firm 2 will match them, then firm one will want to lower their
price. For any p1 ≥ c2 + 2κ firm 2 will want to undercut their price. Thus this
is the set of equilibria.

In the continuous model these equilibria are usually characterized by p2 = p1
but firm 2 gets no demand. This is inconsistent, in our model we asserted that

2 The reader might be amused to realize that p2 = c is actually a weakly dominated strategy
in this game.
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if they charged the same price they would split demand but now we declare
that the consumers only go to one of the firms. One can solve this conundrum
with mixed strategies, as was argued in Bloom (2003). However that seems an
extreme solution to a problem that does not occur in our simpler model.

3 Hotelling Location Model

The classical Hotelling location model has two ice cream sellers choosing a lo-
cation on a beach with a uniform distribution of customers. This is restrictive
because it does not discuss what happens if the distribution is not uniform, and
in general the best responses do not exist because the two sellers will want to
be close to each other. Our finite model does not depend on the distribution
(other than it being strictly positive) and, of course, always has a best response.

3.1 The Model

Two firms compete by choosing location li ∈ (1, 2, 3, ...L). They charge the
same price that is strictly above marginal cost, and thus their objective is to
maximize their number of customers.

At each location l ∈ (1, 2, 3, ...L) there will be cl > 0 customers. Usually
they will always go to the closest firm, if the two firms are an equal distance from
their location they will split their demand. For distance we use the standard
Euclidian metric, d (l, l′) = (l − l′)2, notice that this means the space is linear.
If one wishes one can assume cl is always even, but it equally well could be a

mass. The total number of customers is C =
L�

l=1

cl.

The assumption that every location has some customers is critical to our
analysis. It would not change the equilibria, but it would certainly affect our
argument for iterated deletion of dominated strategies. Of course one could
equally well delete locations with zero customers, but likewise one could add as
many of them as one likes.

3.2 The Best Response

Our first result is the critical intuition, you want to be as close to your rival as
possible. In this game if your opponent is at a higher location than you then
all the customers at a lower location are locked into going to you. Locking in
as many as possible means you want to be as close to your rival as possible.
Like before we will analyze the game from firm one’s perspective without loss
of generality.

Lemma 4 (Business Stealing) BR1 (l2) ∈ {l2 − 1, l2, l2 + 1}.
Proof. The only way this could be false is if BR1 (l2) = l2 ± m for m > 1,
without loss of generality consider l2+m. We wish to show that l2+m− 1 will
result in a strictly larger number of customers. To do this consider the location
l2+

�
m
2

�
. If m is odd these customers all go to firm 2, if m is even half of them
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go to firm 2. If firm one chooses the location l2 +m − 1 either half or all of
these customers will go to firm 1, strictly increasing their sales.

We can be even more precise if one defines the median location(s). This set,
Lm, are the location or locations for which half the customers are located above

or below that location: l∗ ∈ Lm if
l∗�

l=1

cl ≥
C
2

and
L�

l=l∗
cl ≥

C
2

. We notice that

either there is a unique median location or there are two consecutive locations,
and denote ⌈Lm⌉ its highest member and ⌊Lm⌋ its lowest. With this definition
we find:

Proposition 5 The best response is:

BR1 (l2) =






l2 − 1 if l2 > ⌈Lm⌉
l∗ if l2 ∈ Lm for l∗ ∈ Lm

l2 + 1 if l2 < ⌊Lm⌋

Proof. Consider the case l2 > ⌈Lm⌉ if l1 > l2 then firm 2 will get at least C/2
customers, and thus firm one will get less than half. If l1 < l2 firm 1 will get
at least C/2 customers, thus this is optimal. A symmetric argument holds if
l2 < ⌊Lm⌋. If l2 ∈ Lm then any l∗ ∈ Lm will give exactly C/2 customers, and
l1 > ⌈Lm⌉ or l1 < ⌊Lm⌋ will give strictly less than that, thus it is optimal.

3.3 The Equilibrium

In this game if there are two median locations then there can be many equilibria.
However the critical point is that all of them will have the same payoff; there is
only one outcome.

This outcome is that each of them get half the customers and both locate
at the (or a) median location. The last proposition argued that only at these
locations would no one want to change their location, and that is required in a
Nash equilibrium.

3.4 The Outcome of Iterated Deletion of Dominated Strate-
gies

This result actually only relies on the common knowledge of rationality. Showing
this means we need to show that some strategies are dominated, this requires a
case by case analysis for each pair of strategies, and in general can be onerous.
In this game it is fairly straightforward.

For this lemma let L̄ be the highest strategy that has not already been
deleted by iterated deletion of dominated strategies.

Lemma 6 If L̄ > ⌈Lm⌉ then l1 = L̄− 1 dominates l1 = L̄.
Proof. First assume that l2 < L̄− 1 then like in Lemma 4 l1 = L̄− 1 will get
strictly more customers than l1 = L̄. If l2 = L̄ − 1 then l1 = L̄ − 1 will give
C/2 customers and l1 = L̄ will give strictly less. If l2 = L̄ then if l1 = L̄ − 1
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they will get strictly more than C/2 customers since they have captured all the
customers in the median location(s), while l1 = L̄ will given C/2. Thus for any
l2 l1 = L̄− 1 gives a strictly higher payoff than l1 = L̄ and dominates it.

If L is the least location that has not been deleted, a symmetric argument
holds for it. Since these locations are dominated, we can conclude that rational
firms will never choose them, and drop them from further analysis. We repeat
this until L̄ ≤ ⌈Lm⌉ and L ≥ ⌊Lm⌋.

4 Appendix: Mixed strategy equilibria in the
Bertrand game.

Lemma 7 If c1 = c2 = c then there are no non-degenerate mixed strategy
equilibria in the Bertrand game
Proof. Let p̄ be the highest price in the support of the mixed strategy equilibrium,
and assume it is played with probability ρp̄ > 0. We first consider the case where
p̄ ≥ c + 2κ. Consider p̄ − κ which is played with probability ρp̄−κ which might
be zero. Then the expected payoff of these two strategies are:

Eπ (p̄) = ρp̄ (p̄− c)
1

2
D (p̄)

Eπ (p̄− κ) = ρp̄ (p̄− κ− c)
1

2
D (p̄− κ) + ρp̄−κ (p̄− κ− c)

1

2
D (p̄− κ)

and Lemma 1 shows that (p̄− c) 1
2
D (p̄) < (p̄− κ− c) 1

2
D (p̄− κ) thus p̄ is not

a best response. Now consider p̄ = c+κ. Notice that playing c+κ will result in
sometimes getting a strictly positive profit, while playing any lower price will at
best result in zero profits, thus if ρc+κ > 0 the unique best response is c+ κ.
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