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1 Introduction and Model

There are many reasons that firm location is important. There is, of course,
physical location but to be frank location in the taste spectrum is more impor-
tant. Take, for example, Coca Cola and Pepsi. While I am sure you have a
precise brand you prefer (Cola Zero for me thank you) you must admit they
taste very similar. Why? Why do they not differentiate themselves more? In
the land of caffeinated beverages/energy drinks there is a large variety—but
again they seem to be clustered around a few locations. Some firms (Starbucks
for example) work hard to produce a large variety of energy drinks, work hard
to make sure they can satisfy a variety of tastes. Why is this not more common?

Hotelling was the first to address this question. He considered a continuum
of customers uniformly distributed over a linear space—the unit interval. Like
is often the case this means that best responses do not exist outside of equilib-
rium. Because of this I began investigating the model with a discrete number of
locations, and not only are the results more general (they hold for any distrib-
ution) but they are both simple and elegant. Thus I will show you these results
and how to derive them in this handout.

1.1 Model

There are two firms, a and b, who choose their location I, € {1,2,3,.., L} for
x € {a,b}. For convenience we will always assume L is odd. These firms sell
identical products at identical prices, which is fixed above marginal cost.

A customer will have a location y € {1,2,3,..,L} and will buy from firm
aif d(le,y) < d(lp,y) and if d(l4,y) = d(lp,y) they will buy from firm « half
the time. The distance metric can be the quadratic d (lq,y) = (I — y)?, it will
not matter that much. Thus the appropriate description of the distribution

of customers the total number of customers at each location, this is ¢; for [ €
L

{1,2,3,..,L}. We assume ¢; > 0 and let C' = > ¢; be the total number of
=1
customers.
L L& . .
Let Dy (la,ly) = > cilaq, ny<dy,) + 3 2 Cla(a,i)=d(s,,) Where 1, is one if
=1 =1

z is true and zero otherwise. Then their prc?ﬁt function is:

max PDy (la, 1) = C (Da (1, 11)) (1)

and the derivative with respect to D, (lg,1p) is P — MC (D, (la,15)) > 0 by



assumption. Thus the objective can be simply written as:

max Dy (la, 1b) (2)

a

and this is what we will analyze.

2 An Example

Let L = 7 and the distribution of customers be:

Location | 1 2131456 7 (3)
o) 1024614 ]|12| 8| C=46

then the easiest way to solve this is to fill out a table. THe columns will be
the locations of firm b, and the rows will be the locations of firm a, and then in
each square we will write D, (Io,13). Notice that Dy, (Iq, 1) + Dp (la, 1) = C and
that D, (z,y) = Dy (y, ), this will greatly simplify this analysis. For example
iflg =10, D, = % The table is as follows:

1 2 3 4 5 6 7
23 (10|11 ) 12|14 |16 | 19
3612312 14]16 | 19| 22
35|34 (23|16 (19| 22| 24 (4)
341323023 (22|24 |26

32130 | 27|24 (23|26 | 32
30 [ 2724 22(20|23]| 34
2712412212014 |8 |23
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Firm a’s best responses then are the maximum of demand in a given column:

Iy = 1]2]3]4]5]6]7 )
BR,(,) [2]3|4]5|5]5]6

and once we recognize that BR, () = BRy, (v) (symmetry) we can immediately
realize that the unique Nash equilibrium is I, = [, = 5.
There are quite a few interesting facts here. First of all, define [,, €
Lo L
{1,2,3,..,L} as a location such that Y ¢, > § and 3 ¢ > &. This is the
=1 1=l
median location, in this example this is 5, and the Nash equilibrium is to have
both firms locate at the median location. Second is "business stealing," the
best response to [, is always either [, or "right next to it" at either I, — 1 or
lp + 1. In other words they want to be very close to their competitor to steal as
many customers as possible. Third—expanding on the second point—the best
response to lp is I + 1 if [ < Iy, and [, — 1 if I, > [,,.
Finally note we actually can solve this model using iterated deletion of dom-
inated strategies. Notice that D, (6,1,) > Dq, (7,1p) and Dy (2,1,) > D, (1,1).



This means locations 6 dominates location 7 and 2 dominates location 1. Since
no sensible firm would locate in a dominated location (6 is always a strictly
better plan than 7) we can eliminate locations 1 and 7 from analysis. But then
3 dominates 2 and 5 dominates 6. We stop going down from above now, but we
can still show that—after eliminating 2—4 dominates 3, and then after eliminat-
ing 3 we can see 5 dominates 4. This is a very powerful result, not only is 5 the
Nash equilibrium (which requires both rationality and correct expectations) but
it is the unique strategy that survives iterated deletion of dominated strategies
(which requires only common knowledge of rationality). Is this general? We
will show that with some mild assumptions it is.

3 General Analysis

First let us lay out our assumptions. Generally speaking these assumptions are
just for simplicity, if we do not make them analysis is just more complicated—
however the proof of iterated deletion of dominated strategies does strictly rely
on ¢; > 0 for all [.

Assumptions ¢; >0 for all [ € {1,2,3,.., L}, and I, is unique.

3.1 Best Responses and Nash Equilibrium

We can immediately generalize the insights in our example.

Lemma 1 (Business Stealing) BR, (Iy) € {ly — 1,1p,l + 1}

Proof. We only rule out BR,, (Iy) = lytk for k > 1, thus let us consider locating
lb-‘r(k?—l)

at ly+k. This means that there are Y. ¢ > 0 customers in between firms a
I=lp+1

and b, at least some of these will go to firm b, if firm a chooses I, + 1 instead of

lp + Kk all those customers will go to firm a, giving them a strictly higher payoff.
|

Lemma 2 (Move to the Median)

bh+1 if lh<ly
BR, (lb) = lb Zf lb = lm
lpb—1 Zf Iy >l

Proof. To recognize this we must first realize that at a best response D, (1q,1p) >

%, This is because if l, = ly then Dg (14,1p) = % so at any location firm one

l—1
can achieve % Ifl, =1y —1 then Do (I — 1,1p) = > ¢ and this is only greater
=1

than % if ly > . A symmetric argument shows that if l, < I, then lg, = Iy + 1.

I—1 L
If Iy, = 1, then since we assumed 1, was unique l§ ) <3 andl lE . <3
= =1

thus the best response is established. ®



Noticing the symmetry of the best responses we can immediately conclude:

Proposition 3 If ¢; > 0 for alll and l,, is unique then the unique Nash equi-
librium of the Hotelling location game is l, =l = 1, .

3.2 Dominance and Iterated Dominance

We say that one strategy dominates the other if it gives a strictly higher payoff (is
a better response) no matter what the other player(s) does. Obviously, logically,
no rational player would use a dominated strategy. Thus if we assume common
knowledge of rationality then each player can assume that the others would not
use a dominated strategy, and we can iterate this concept. In this game we can
iteratively delete the highest and the lowest strategy, until the only strategy we
are left with is the median location.

A warning, this proof strictly requires ¢; > 0 for all [. If this condition is
violated then we would only have "weakly dominant" in the following proof.
Weak dominance is not a valid reason to remove a strategy, for example in the
classic Bertrand Duopoly one can easily show that the only Nash equilibrium is
in weakly dominated strategies. (If p = ¢ then your profits will always be zero,
while if p > ¢ then your profits will sometimes be strictly positive. Thus the
only Nash equilibrium (p; = ps = ¢) is weakly dominated by any p > c.)

Lemma 4 Let [ be the minimal location under consialemtion, anc_l [ be the mazi-

mal location. Then if | <y, [+1 dominates [, and if | > I, then |—1 dominates

l.

Proof. We must show that D, (L + 1,1) > D, (I,1p) for everyly, € {L,L + 1,1+ 2, ,l}

L

First if ly = L then Do (L)) = $ and Do 1+ 1,1) = Y ¢ > < since L < b,
I1=1+1
Ifly = L+1 then this also shows that Do (1,1 +1) < § = Do (L+ 1,1+ 1). Now
consider I, =L+ k for k> 1 then Dy (I,ly) + 2141 < Do (L+1,1p) since at the
very least firm a will capture half of the customers at cj1 if lo, =1+ 1. Thus
the proof is done, a symmetric argument easily establishes that [ —1 dominates
[. m

We can now iterate this concept and conclude:

Proposition 5 If ¢; > 0 for all |l and l,,, is unique, then it is also the unique
strategy to survive iterated deletion of dominated strategies.

Proof. The proof above shows that if I < l,, [ + 1 dominates I when [, €
{L,L—I— 1,L+2,...,Z} and likewise | > 1, then | — 1 dominates | when l, €
{L,L +1,142,..., Z}, thus we can immediately iterate it and the process will stop

from either direction whenl =1, orl=1,. ®

Notice that generally speaking this process will stop after a different number
of iterations from each direction. In the example above [,,, = 5 so it only took
two steps to get from 7 to 5, and four steps coming from below.



4 Welfare and Generalization

In welfare terms this equilibrium is just awful. As long as the welfare function
wants to minimize the distance between customers and the firms it would clearly
be welfare dominant to have the two firms at different location. More intuitively
this result is just ridiculous, consider the following distribution for any natural
number k € {0,1,2,...}.

Location 1 2 3 (6)
a 10 2 10F

If £ = 0 then maybe you might want both firms at location 2, but what if k£ = 6,
105 = 1,000,000? Surely a sensible planner would insist that one firm locate at
location 1 and one locate at location 37 What if k = 157

In terms of general insight, well this seems very sound. We often observe
chain stores congregated in one area in new shopping malls, etcetera. However
while this result suggests why they might do that in the model the result only
holds if there are two firms. If there are three or more firms there might be
mixed strategy equilibria and possibly many different equilibria. For example
in our example (displayed item 3) we can find an 4 step cycle in pure strategy
best responses, thus proving a mixed strategy equilibrium exists.

Location 1 23415 |6 7

1) 102464 |12]8

Initial distribution |l |,

BRC (la7 lb) lc lb la (7)
BR, (Iy, 1) le |y ]l

BRy (la,1¢) le la | Uy

BR. (I, 1) le | la | lp




